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Abstract. Using the technique of labeled operators, compact explicit expressions are given for all traced
heat kernel coefficients containing zero, two, four and six covariant derivatives, and for diagonal coefficients
with zero, two and four derivatives. The results apply to boundaryless flat space-times and arbitrary
non-Abelian scalar and gauge background fields.

1 Introduction and conclusions

Ever since its introduction by Schwinger [1], the heat ker-
nel of Laplace-type operators has been a useful tool to
deal with one loop effective actions in quantum field the-
ory. This due to the fact that the heat kernel provides
a manifestly gauge invariant regularization of ultraviolet
divergences. An additional virtue, is that, unlike the ef-
fective action, the heat kernel is a one-valued functional.
The heat kernel can be applied to study spectral densities
of Klein–Gordon operators and in the proof of index theo-
rems [2,3], to compute the ζ-function [4] and the anomalies
of Dirac operators [5], to deal with chiral gauge theories [6]
and models of QCD [7], to the Casimir effect [8], to com-
pute black hole entropies [9], etc. Exact calculations of the
heat kernel at coincident points are available in partic-
ular manifolds [10, 11] or for configurations subjected to
suitable algebraic constraints (of the constant curvature
type) [12–14]. In the general case an asymptotic expansion
in powers of the proper time, the Seeley–DeWitt expan-
sion [15,16], is available. The coefficients of the expansion
have been computed to rather high orders in several setups,
including curved spaces with and without boundary, and
in presence of non-Abelian gauge fields and non-Abelian
scalar fields, using different methods [6, 17–24]. The heat
kernel expansion at finite temperature has been discussed
in [25,26]. A generalized heat kernel expansion around non-
c-number mass terms has been introduced in [27–29]. The
extension to non-commutative quantum field theory has
been presented in [30].

The standard heat kernel expansion can be regarded
as a double expansion in the strength and in the num-
ber of derivatives of the background fields. It is therefore
most suitable for external fields which are both weak and
adiabatic, i.e., of slow space-time variation. A resumma-
tion of this expansion is provided by covariant perturba-
tion theory [31]. Perturbation theory assumes weak but
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not necessarily adiabatic fields. In this paper we study a
different resummation, namely, a covariant derivative ex-
pansion [32–34]. The terms of this expansion have a given
number of covariant derivatives but any number of scalar
fields (these fields playing the role a non-Abelian local mass
term). So the fields are assumed to be adiabatic (and the
gauge fields weak, to preserve gauge invariance) but the
scalar fields may be strong. Using the technique of labeled
operators, we are able to write in finite form the contri-
butions to the traced heat kernel classified by the number
of derivatives. Such contributions can also be regarded as
generating functions for all the heat kernel coefficients of
the standard Seeley–DeWitt expansion with a fixed num-
ber of derivatives. Explicit results are presented for zero,
two, four and six derivatives, involving 1, 1, 6 and 52 sum-
mands, respectively. These results hold for boundaryless
flat space-time but non-Abelian gauge and scalar fields. Ex-
tension to curved space-time should also be possible using
the symbols method. A covariant derivative expansion to
four derivatives has been obtained in [35] for the diagonal
heat kernel and in [36] for the effective action, for curved
space-time in the case of minimal (i.e. Abelian) scalar field
and no gauge connection.

In Sect. 2 we define the covariant derivative expansion
for the trace of the heat kernel and work out the lower
order terms. Although the calculation could be done from
scratch using the method of symbols, a shorter path is pro-
vided by the method of Chan [32] which was devised for
the effective action. In that section results are presented
to four derivatives. We show that after expansion of our
results in powers of the scalar field the standard coefficients
are recovered. Section 3 is devoted to explaining the tech-
nique of labeled operators [33,34,37,38]. Such a procedure
allows one to develop a calculus to deal with functions of
non-commuting variables. The non-commutative version
of the ordinary derivative is shown to satisfy the Leibniz
and chain rules, as well as to yield a non-commutative ver-
sion of the Taylor expansion. In Sect. 4 the diagonal heat
kernel coefficients, within the derivative expansion, are ob-
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tained to four derivatives. This is done through functional
variation of the traced coefficients. Unlike the standard
expansion, in the resummed expansion one finds that each
diagonal term comes from the traced term of the same or-
der. This yields a consistency condition that is verified by
our formulas. Section 5 gives the six derivative contribu-
tion. It is based on previous results for the effective action
found in [39]. Here one important issue is that of finding
either a short or a systematic expression for the result.
This is due to the existence of identities among the possi-
ble gauge invariant structures, coming from integration by
parts and Jacobi identities. In that section we give a rela-
tively short expression for the six derivative contribution,
which contains 52 different gauge invariant structures. In
Sect. 6 we study the problem of finding a standard basis
of structures for the derivative expansion of generic gauge
invariant functionals. The corresponding problem in the
context of the standard heat kernel expansion has been
treated before by Müller [40, 41]. Some subtleties appear
for the derivative expansion because the analogous of the
Seeley–DeWitt coefficients are now functions (of labeled
operators). So, for instance, even if the elements of a basis
are complete and linearly independent it does not directly
follow that the coefficients must be unique; it is at least
necessary to impose permutation symmetry restrictions to
the functions which play the role of coefficients of the ex-
pansion. In this last section we construct standard basis of
gauge invariant structures for functionals with zero, two,
four and six derivatives, with 1, 1, 6 and 37 elements, re-
spectively. It is worth noticing that, similarly to what hap-
pens for the standard heat kernel expansion [30], all the
results presented here apply directly to non-commutative
quantum field theory. This is particularly clear when such
theories are formulated within the quantum phase space
approach [42], which only requires to replace the integral
over coordinates by a trace onX-space. Indeed, at no place
do we use special commutation properties for our symbols,
except [∂µ, ∂ν ] = 0 which holds in the non-commutative
case too.

2 Covariant derivative expansion
of the heat kernel

Our goal is to obtain a derivative expansion for the heat
kernel of the Klein–Gordon operator

K = D2
µ +X . (2.1)

Here X(x) is a multiplicative operator (i.e. an ordinary
function) which is a matrix in some internal space, Dµ =
∂µ+Vµ(x) is the covariant derivative, Vµ(x) being a matrix
in internal space. Space-time is Euclidean and flat, without
boundaries and has dimension d. K acts on matter fields
in the fundamental representation.

The standard heat kernel expansion is of the form

〈x|eτK |x〉 = 1
(4πτ)d/2

∞∑
n=0

τn an(x) . (2.2)

This is an asymptotic expansion where the an, known as
(diagonal) Seeley–DeWitt coefficients, are τ -independent
local gauge covariant polynomials of dimension 2n. They
are constructed with X and Dµ in gauge covariant combi-
nations. One can choose to order the expansion by powers
of τ or, equivalently, by the mass dimension carried by the
external fields Vµ and X and their derivatives. The quan-
tities ∂µ, Vµ and X have dimension 1,1,2 respectively. In
spaces with boundary, n may take half-integer values [43],
but in our case the index n is a non-negative integer. The
lowest order terms are

a0 = 1 ,

a1 = X ,

a2 =
1
2
X2 +

1
6
Xµµ +

1
12
Z2
µν . (2.3)

In the derivative expansion the terms are classified by
the number of covariant derivatives they carry, rather than
the mass dimension they carry (as in the standard heat
kernel expansion) so

〈x|eτK |x〉 = 1
(4πτ)d/2

∞∑
n=0

τnAn(x) , (2.4)

whereAn(x) depends on τ and contains 2n covariant deriva-
tives. In this counting, X counts as zeroth order, [Dµ, X]
as first order, Zµν = [Dµ, Dν ] as second order, and so on.
(Counting the dimension carried by the background fields
and by τ , An has dimension 2n.) Technically, the covari-
ant derivative expansion can be defined by introducing a
bookkeeping parameter λ by means of X(x) → X(λx)
and Vµ(x) → λVµ(λx), and then expanding the functional
〈λ−1x|eτK(λ)|λ−1x〉 in powers of λ. The derivative expan-
sion is a resummation of the standard expansion, namely,
if aqn denotes the pieces of an with exactly 2q covariant
derivatives (and so with n− q X’s)

Aq(x) =
∑
n≥q

τn−qaqn(x) . (2.5)

In what follows we will set τ = 1, i.e. remove τ from
the formulas, since it can be restated at any moment by
standard dimensional counting. Thus, for instance

〈x|eK |x〉 = 1
(4π)d/2

∞∑
n=0

An(x) . (2.6)

In each An, X appears to all orders. The prescription to
restore τ is simply to make the replacementX → τX, plus
An → τnAn.

For many purposes it is often sufficient to work with
the functional trace of the heat kernel,

Tr eK =
∫

ddx tr〈x|eK |x〉 . (2.7)

The symbol Tr refers to the full trace on space-time and
internal spaces. We will use tr to denote the trace in the
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internal space only. Introducing the short-hand notation1

〈 〉 := 1
(4πτ)d/2

∫
ddx tr ( ) , (2.8)

the standard and derivative expansions take the form

Tr eK =
∞∑
n=0

〈an(x)〉 =
∞∑
n=0

〈An(x)〉 . (2.9)

In Tr eK one can use simpler coefficients, bn and Bn,
which coincide with an and An, respectively, modulo by
parts integration and the trace cyclic property, so that

〈bn〉 = 〈an〉 , 〈Bn〉 = 〈An〉 . (2.10)

In particular,

Tr eK =
∞∑
n=0

〈Bn〉 . (2.11)

Whereas the coefficients An and the functionals 〈Bn〉 are
uniquely defined, there is an ambiguity in the choice of Bn
which is exploited to choose them as simple as possible. The
coefficients An can be obtained from the Bn (see Sect. 4).

The calculation of the coefficients Bn can be done us-
ing the method of symbols [44,45] (actually, this methods
provides An from which Bn is obtained). In addition to
the derivation of the coefficients an important part of the
calculation is to find a simple expression for them, that is,
removing redundancies coming from the trace cyclic prop-
erty, integration by parts and Bianchi identities. Because
much work has been devoted to the covariant derivative ex-
pansion of the effective action, we have found it practical to
start from that functional where much of the simplification
work has already been done. The most useful results for our
purposes are found in the work of Chan [32] who obtains
the derivative expansion of the effective action with a min-
imum of terms up to four derivatives. This work was later
extended to six derivatives in [39]. There we find (making
explicit terms up to second order)

Tr logK =
∫

ddxddk
(2π)d

tr
(

− logN +
k2

d
N2
µ + . . .

)
,

(2.12)
where

N = (k2 −X)−1 , Nµ = [Dµ, N ] . (2.13)

In what follows we will consistently use the convention2

YµI = [Dµ, YI ] where YI is an object (such as N , X or Z)
with an ordered set of Lorentz indices I. So for instance3

Xµν = [Dµ, [Dν , X]] ,

1 Our notational conventions are summarized in AppendixA.
2 Here and elsewhere in this work Y stands for a generic

matrix-valued function.
3 Note that in [39] the convention YIµ = [Dµ, YI ] is used

instead. Also Fµν there corresponds to iZµν here.

Zµνλ = [Dµ, Zνλ] = [Dµ, [Dν , Dλ]] . (2.14)

The formula (2.12) holds modulo a counterterm action
which must be a local polynomial (in X, Vµ and ∂µ) of
degree at most d. Such counterterms depend on the renor-
malization prescription chosen. The derivative expansion
of the effective action can be written as

Tr logK =
∫

ddxddk
(2π)d

∞∑
n=0

k2n Γ (d/2)
Γ (n+ d/2)

tr (Fn) .

(2.15)
Each Fn is gauge covariant, contains a number 2n of Dµ’s
and a number 2n of N ’s, and has no explicit dependence
on the space-time dimension d. To four derivatives

F0 = − logN ,

F1 =
1
2
N2
µ , (2.16)

F2 = N2
µN

2
ν − 1

2
(NµNν)2 − (NNµµ)2 − 2NZµνNNµNν

− 1
2
(ZµνN2)2 .

These terms were obtained in [32]4. The six derivative term
F3 is given in (5.1). It was obtained in [39] and contains 45
terms. In this section we concentrate on terms up to four
derivatives and defer the treatment of the six derivative
terms to Sect. 5. We will not consider terms with eight or
more derivatives in this work.

First of all we will translate the expansion (2.15) to an
expansion for the heat kernel:

eK =
∫
Γ

dz
2πi

ez

z −K
=

∫
Γ

dz
2πi

ez
d
dz

log(K − z)

= −
∫
Γ

dz
2πi

ez log(K − z) . (2.17)

Here Γ is a positively oriented path in the z complex plane
enclosing the eigenvalues of K. Because the large eigenval-
ues of K lie on the real negative axis, the path is taken
starting and ending at −∞. Next we apply Chan’s for-
mula (2.15) to Tr log(K − z), i.e., with the replacement
X → X − z. The first thing to note is that the countert-
erm ambiguities do not survive in the heat kernel, since a
polynomial in z does not give a contribution to the integral
in (2.17). Taking Tr in (2.17) and inserting (2.15), one finds
that all non-explicit dependence on kµ comes in the form
X − k2 − z. Making the shift z → z − k2 removes all de-
pendence on kµ in Fn. (Such change of variables is justified
at the level of asymptotic expansions we are considering.)
Straightforward momentum integration gives then

Tr eK = −
∞∑
n=0

∫
Γ

dz
2πi

ez 〈Fn〉 ; (2.18)

4 Note that the sign of the fourth term of F2 is incorrect
in [32].
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that is,

Bn = −
∫
Γ

dz
2πi

ezFn (2.19)

(perhaps modulo integration by parts and cyclic property).
In this formula the quantities Fn are given by the same
expressions (2.16) where now

N = (z −X)−1 . (2.20)

The integration over z is easily done for the zeroth order
term (undoing the steps in (2.17))

B0 =
∫
Γ

dz
2πi

ez logN =
∫
Γ

dz
2πi

ez

z −X
= eX . (2.21)

For B1, we first expand the covariant derivative using
the identity

Nµ = NXµ N, (2.22)
so that z appears only in N outside covariant derivatives

F1 =
1
2
N2XµN

2Xµ (2.23)

(exploiting the cyclic property to move the last N to the
first place).

When this F1 is inserted in (2.19) the integral over z
cannot be readily done because z appears in two places and
the operators do not commute in general. Here we apply the
technique of labeling the operators [33,34,37,38]: relative to
the two Xµ in (2.23) there are three positions, namely, the
position 1 at the left of the first (leftmost)Xµ, the position
2, in between the twoXµ and the position 3, after the second
Xµ. (Operators at position 3 can be moved to position 1 by
the cyclic property.) The operators relative to which the
positions are defined (the two Xµ in this case) are named
“fixed operators”. The other operators are then labeled
according to their position relative to the fixed operators
and moved to the left (or to any convenient location in the
expression). In this way we can rewrite (2.23) as

F1 =
1
2
N2

1N
2
2XµXµ =

1
2

1
(z −X1)2

1
(z −X2)2

X2
µ .

(2.24)
The labels 1 and 2 indicate at which position the labeled
operators N1 and N2 (or X1, X2) should be inserted (rela-
tive to the fixed operators XµXµ). The point of following
this procedure is that the labeled operators are effectively
c-numbers: similar to the time-ordered product or the nor-
mal product, they can be written in any order since their
true position is given by their label. Because they are c-
numbers, nothing prevents us from doing the z integration
as for ordinary functions. We refer to Sect. 3 for details on
the use and properties of labeled operators. Their use is
crucial for the rest of the paper. After integration over z
we obtain

〈B1〉 =
〈
f(X1, X2)X2

µ

〉
(2.25)

whereX1 isX located at position 1 andX2 isX at position
2. f(X1, X2) is the ordinary function f(x, y) evaluated at
X1 and X2, with

f(x, y) = − 1
2

∫
Γ

dz
2πi

ez
1

(z − x)2
1

(z − y)2

=
ex − ey

(x− y)3
− 1

2
ex + ey

(x− y)2
. (2.26)

(By definition Γ always encloses the poles, in this case at
x and y.)

The right-hand side of (2.25) can be regarded as the
generating function for all the Seeley–DeWitt coefficients
with two covariant derivatives. Indeed, making a series
expansion in X one obtains (using the cyclic property in
the second equality)

〈B1〉 =
〈(

− 1
12

− 1
24

(X1 +X2) − 1
80

(X2
1 +X2

2 )

− 1
60
X1X2 + . . .

)
X2
µ

〉
=

〈
− 1
12
X2
µ − 1

12
XX2

µ − 1
40
X2X2

µ

− 1
60
XXµXXµ + . . .

〉
. (2.27)

To the order shown, this reproduces the pieces with two
covariant derivatives in b3, b4 and b5 [17].

For the four derivative term we proceed similarly. Ex-
panding the covariant derivatives of N one finds

F2 = (N2XµN
2Xµ)2 − 1

2
(N2XµN

2Xν)2

−4(N3XµNXµ)2 − (N3Xµµ)2

−4N3XµNXµN
3Xνν − 2N2XµN

2XνN
2Zµν

− 1
2
(N2Zµν)2

= N2
1N

2
2N

2
3N

2
4 (X

2
µ)

2 − 1
2
N2

1N
2
2N

2
3N

2
4 (XµXν)

2

−4N3
1N2N

3
3N4(X2

µ)
2 −N3

1N
3
2X

2
µµ

−4N3
1N2N

3
3X

2
µXνν − 2N2

1N
2
2N

2
3XµXνZµν

− 1
2
N2

1N
2
2Z

2
µν . (2.28)

The integrals over z involved in the computation of the
Bn are of the form

Ir1,r2,...,rn(X1, X2, . . . , Xn) :=
∫
Γ

dz
2πi

ezNr11 N
r2
2 . . . Nrn

n .

(2.29)
They can be computed from the basic integrals

I0
n(X1, X2, . . . , Xn) (2.30)

:=
∫
Γ

dz
2πi

ezN1N2 . . . Nn =
n∑
i=1

eXi

∏
j �=i

1
Xi −Xj

using

Ir1,r2,...,rn
(X1, X2, . . . , Xn) (2.31)
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=
n∏
i=1

1
(ri − 1)!

(
∂

∂Xi

)ri−1

I0
n(X1, X2, . . . , Xn) .

(Alternatively, Ir1,r2,...,rn
(X1, X2, . . . , Xn) can be obtained

from I0
r1+...+rn

taking the first r1 arguments to be X1,
then the next r2 arguments to be X2 and so on.) Note
that the functions Ir1,r2,...,rn are everywhere analytic in
the n-dimensional complex plane, and invariant under a
common permutation of labels rj and arguments Xj . The
basic functions I0

n are completely symmetric and they can
be obtained from the following recurrence relation

I0
1 (X1) = eX1 , (2.32)

I0
n+1(X1, . . . , Xn−1, Xn, Xn+1)

=
I0
n(X1, . . . , Xn−1, Xn) − I0

n(X1, . . . , Xn−1, Xn+1)
Xn −Xn+1

.

We will use the short-hand notation

Ir1,r2,...,rn
:= Ir1,r2,...,rn(X1, X2, . . . , Xn) . (2.33)

With this notation the lowest terms in the derivative ex-
pansion are

〈B0〉 = 〈I1〉 ,

〈B1〉 =
〈

− 1
2
I2,2X

2
µ

〉
, (2.34)

〈B2〉 =
〈
(−I2,2,2,2 + 4I3,1,3,1) (X2

µ)
2 +

1
2
I2,2,2,2(XµXν)2

+I3,3X2
µµ + 4I3,1,3X2

µXνν

+2I2,2,2XµXνZµν +
1
2
I2,2Z

2
µν

〉
.

Expanding in powers of X one obtains for B2

〈B2〉 =
〈

1
12
Z2
µν

+
1
12
XZ2

µν

+
1
40
X2Z2

µν +
1
60

(XZµν)2 +
1
60
XµXνZµν

+
1
120

X2
µµ (2.35)

+
1
180

X3Z2
µν +

1
120

X2ZµνXZµν

+
1
180

(XXµXνZµν +XµXXνZµνXµXνXZµν)

+
1
180

X2
µXνν

+ . . .
〉
,

which reproduces b2, b3, b4, b5 to four covariant deriva-
tives [17].

The expressions (2.34), together with the similar ex-
pression (5.2) for B3, are the main result of this work.
Note that, compared to the standard heat kernel expan-
sion, in the covariant derivative expansion the numerical
coefficients of the standard expansion are replaced by co-
efficients which are functions of labeled X’s.

It can be observed that the coefficient functions found
are directly consistent with the cyclic property. For in-
stance, the identity〈
f(X1, X2, X3, X4)X2

µX
2
ν

〉
=

〈
f(X3, X4, X1, X2)X2

νX
2
µ

〉
(2.36)

shows that one can always choose the coefficient func-
tion of (X2

µ)
2 to be invariant under the cyclic permutation

(X1, X2, X3, X4) → (X3, X4, X1, X2) and this symmetry
is explicit in 〈B2〉 given in (2.34) using the permutation
symmetry properties of the functions Ir1,r2,...,rn .

There is another symmetry also realized in theBn which
will play an important role in what follows. This is mir-
ror symmetry, that is, the symmetry under transposition
defined by linearity plus the rules

(AB)T = BTAT , DT
µ = Dµ , XT = X . (2.37)

They imply [Dµ, Y ]T = −[Dµ, Y T] and thus

XT
µ1...µn

= (−1)nXµ1...µn , ZT
µ1...µn

= (−1)n−1Zµ1...µn .
(2.38)

In practice, because the total number of Lorentz indices is
always even, an equivalent rule is to pick up a minus sign
for each Zµ1...µn in the expression.

Mirror symmetry holds for the Klein–Gordon operator
K and for the heat kernel eK , and is manifest in B0, B1
and B2. E.g.〈
f(X1, X2, X3)X2

µXνν
〉T

(2.39)

=
〈
f(X4, X3, X2)XννX2

µ

〉
=

〈
f(X3, X2, X1)X2

µXνν
〉

shows that the coefficient function ofX2
µXνν (namely, I3,1,3

in this case) can be chosen even under transposition of
X1 and X3. It is curious that the coefficient function of
XµXνZµν has a greater symmetry than required by cyclic
and mirror symmetries.

3 Labeled operators

In this section we describe useful properties of labeled op-
erators. In an expression with labeled operators, there are
fixed operators relative to which the positions are defined
and labeled operators which carry position labels, e.g.5

f(A1, B2, C3, . . .)XY . . . (3.1)

X, Y , etc, are the fixed operators in this case, A is to be
inserted before (to the left of) X (position 1), B between

5 The symbols A, B, X, etc, are generic and do not refer to
those of the heat kernel throughout this section.
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X and Y (position 2), C just after Y (position 3) and so on.
Such an expression can be defined in two equivalent ways.
First by writing f as a sum of separable functions, e.g.

f(x1, x2, x3, . . .) =
∑

n1,n2,n3,...

cn1,n2,n3,...x
n1
1 x

n2
2 x

n3
3 . . . ,

f(A1, B2, C3, . . .)XY . . . (3.2)

:=
∑

n1,n2,n3,...

cn1,n2,n3,...A
n1XBn2Y Cn3 . . . .

Another example would be the expansion of f as a com-
bination of plane waves, through its Fourier transform.

Alternatively the expression in (3.1) can be interpreted
through its matrix elements. Taking |n,A〉 as a basis of
eigenvectors of A with eigenvalue an, and similarly for B
and C, and 〈n,A|, etc. being the corresponding dual basis,

〈n,A|f(A1, B2, C3)XY |r, C〉 (3.3)

=
∑
m

f(an, bm, cr)〈n,A|X|m,B〉〈m,B|Y |r, C〉 .

The important point is that the expression in (3.1) depends
only on the function f and not on how it is expanded.

The usefulness of the labeled operators stems from the
fact that they are effectively c-numbers since e.g. A1B2 =
B2A1, and so they can be used in several ways. For instance,
[A, ] can be written asA1−A2, since [A,X] = (A1−A2)X,
then f([A, ]) can be represented as f(A1 −A2). The well-
known identity

e[A, ]X = eAXe−A (3.4)

becomes trivial using labeled operators

e[A, ]X = eA1−A2X = eA1e−A2X = eAXe−A . (3.5)

This kind of properties have been used in [33,38] to easily
derive commutator expansions.

Labeled operators appear naturally in non-Abelian ex-
pansions. If one needs to compute6 f(A+B) to first order
in B, where A and B do not commute, a standard tech-
nique is to transform this problem into eA+B by means of
a functional transform, and then apply Dyson’s formula

eA+B = eA +
∫ 1

0
ds esABe(1−s)A +O(B2) . (3.6)

Using labeled operators one can go further and obtain

eA+B = eA +
∫ 1

0
dsesA1+(1−s)A2B +O(B2)

= eA +
eA1 − eA2

A1 −A2
B +O(B2) (3.7)

6 By f(A), and similar expressions, we mean an ordinary
function f(x) evaluated at x = A, A being an operator, in
the analytical extension sense, as in eA (and not to completely
general operator-valued functions of A). More generally, f may
be matrix-valued taking values in a different space than that
of A.

(B being the fixed operator). Undoing now the functional
transform yields the useful relation, for a generic func-
tion f(x),

f(A+B) = f(A) +
f(A1) − f(A2)
A1 −A2

B +O(B2) . (3.8)

This relation does not rely on the exponential function
and can also be established by using, e.g., a Taylor series
expansion of f(x).

From the previous expansion we learn that under a first
order variation δA of the operator A (the function f being
unchanged)

δ (f(A)) = ∇f(A1, A2)δA, (3.9)

where the operation ∇ is defined by

∇f(x1, x2) :=
f(x1) − f(x2)
x1 − x2

. (3.10)

∇maps a one-argument function f(x) into a two-argument
function ∇f(x, y). Note that δ can be any variation of A,
including e.g. a derivative

∂µf(A) = ∇f(A1, A2)∂µA (3.11)

or a commutator, δ = [X, ],

[X, f(A)] = ∇f(A1, A2)[X,A] (3.12)

(indeed ∇f(A1, A2)[X,A] = ∇f(A1, A2)(A2 − A1)X =
(f(A2) − f(A1))X = [X, f(A)]).

The operator ∇ generalizes the ordinary derivative to
the non-Abelian case. Of course, when A and δA commute
the right-hand side of (3.9) becomes f ′(A)δA (applying
de l’Hôpital’s rule). It is straightforward to verify that the
operator ∇ satisfies a Leibniz rule,

∇(fg)(x1, x2) = ∇f(x1, x2)g(x2) + f(x1)∇g(x1, x2) ,
(3.13)

where f(x), g(x) are possibly non-commuting (matrix-
valued) functions of a single variable. Furthermore, ∇ also
complies with the chain rule

∇(f ◦ g)(x1, x2) = ∇f (g(x1), g(x2))∇g(x1, x2) (3.14)

(in this case f(x) may be matrix valued) as is readily ver-
ified.

In the case of several variables one may need partial
derivatives, e.g.

δ(f(A1, B2)X)

= ∇1f(A1, A2, B3)δAX + ∇2f(A1, B2, B3)XδB

+f(A1, B2)δX , (3.15)

where ∇� indicates that it acts on the &th argument of f .
It is also convenient to define a ∇ operator acting on

the space of functions of any number of variables, in such
a way that if maps a n-variable function f(x1, . . . , xn) to
a (n+ 1)-variable function, as

∇ :=
∑
k

∇k (3.16)
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(∇k acting on the kth argument of the function) and so

∇f(x1, . . . , xn+1) (3.17)

=
n∑

k=1

f(x1, . . . , x̂k+1, . . . , xn+1) − f(x1, . . . , x̂k, . . . , xn+1)
xk − xk+1

,

where x̂� indicates that the &th argument is missing. The
definition is such that

δ
(
f(A1, . . . , An)(δA)n−1)

= ∇f(A1, A2, . . . , An+1)(δA)n (3.18)

for δ(A) = δA and δ(δA) = 0. Using this operator we can
write down the non-Abelian version of Taylor’s formula

f(A+B) = eB∇Af(A) (3.19)

(∇A emphasizes that ∇ acts on the A-dependence of the
expression). That is

f(A+B)

= f(A) + ∇f(A1, A2)B +
1
2!

∇2f(A1, A2, A3)B2 + . . .

= f(A) +
f(A1) − f(A2)
A1 −A2

B

+
(

f(A1)
(A2 −A1)(A3 −A1)

+
f(A2)

(A1 −A2)(A3 −A2)

+
f(A3)

(A1 −A3)(A2 −A3)

)
B2 + . . . . (3.20)

In the Abelian case the coefficients reduce to those of the
standard Taylor expansion.

To finish this section we note a very important point
when using labeled operators, namely, that of the regularity
of the functions of the type f(A1, A2, . . .) at the coincidence
limit of two or more arguments. These functions must be
regular (free from poles) at the coincidence limit to de-
fine meaningful operators. For instance, an expression of
the type

1
A1 −A2

B (3.21)

is only formal as it refers to any solution Y of the equation
[A, Y ] = B. Depending on the operators A and B such a
solution either does not exist or is not unique.The operation
∇ (cf. (3.10)) does not introduce singularities (poles) in that
limit and the functions appearing in the expansion (3.20)
are all regular.

4 Diagonal heat kernel coefficients

The diagonal coefficients An(x) can be computed using
e.g. the method of symbols, however, having the Bn it is
simpler to derive them from the relation [6]

δX Tr eD
2
µ+X = Tr

(
eD

2
µ+XδX

)
, (4.1)

where δX is a first order variation with respect toX. That is

〈x|eK |x〉 = δTr eK

δX(x)
. (4.2)

For the Seeley–DeWitt coefficients this implies

an(x) = (4π)d/2
δ 〈bn+1〉
δX(x)

, (4.3)

whereas for the derivative expansion coefficients it gives

An(x) = (4π)d/2
δ 〈Bn〉
δX(x)

. (4.4)

This relation allows one to obtain An from Bn, but Bn can
also be obtained from An through (2.10). This implies the
consistency condition

〈Bn〉 = (4π)d/2
〈

δ 〈Bn〉
δX(x)

〉
. (4.5)

It can be shown that this consistency condition is satisfied
by our expressions (2.34). This only requires the property

Ir1,r2,...,rn
= eX1f(X2 −X1, . . . , Xn −X1) (4.6)

(this relation codifies the heat kernel property eK → eaeK
under the shift X → X + a, a being a c-number). The
consistency condition is not sufficient to determineBn since
it will be satisfied too by all heat kernel-like operators of
the form exp

(
X + f(D2

µ)
)
.

Using the results in Sect. 3 relative to the manipula-
tion of labeled operators, one can carry out the functional
derivative with respect to X indicated in (4.4) for 〈Bn〉
given in (2.34). However, in the present case it is simpler
to go back to Fn (i.e., before integration over z and labeling
of operators) and do the variation there, using the identity

δXN = NδXN . (4.7)

We illustrate the method with A1:

δX 〈F1〉

= δX
〈
1
2
N2XµN

2Xµ

〉
=

〈
NδXN2XµN

2Xµ +N2δXNXµN2Xµ

+N2(δX)µN2Xµ
〉

(4.8)

=
〈(
N2XµN

2XµN +NXµN2XµN
2

−(N2XµN
2)µ

)
δX

〉
=

〈( − 2N2XµNXµN
2 −N2XµµN

2)δX
〉
.

I.e.

δ 〈F1〉
δX

= − 1
(4π)d/2

(
2N2

1N2N
2
3XµXµ +N

2
1N

2
2Xµµ

)
.

(4.9)
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Following the same procedure with F2 and carrying out
the integration over z, we find

A0 = I1 ,

A1 = 2I2,1,2X2
µ + I2,2Xµµ ,

A2 = 2I2,1,2 ZµνZµν

+ (4I2,2,2 − 8I3,0,3 + 8I2,1,3)ZµµνXν

+ (4I2,1,2,2 − 16I3,0,1,3)XµZµνXν

+ (32I3,0,1,3 − 16I2,1,1,3 − 8I2,1,2,2 + 16I3,0,2,2)ZµνXµXν

+ 2I3,3Xµµνν

+ (2I2,3,2 + 4I3,1,3 + 4I2,2,3)XµµXνν

+ 8I3,1,3XµνXµν

+ (16I3,1,3 + 8I3,2,2)XµννXµ

+ (4I2,2,2,2 + 16I3,1,1,3 + 16I2,2,1,3)XµXµνXν

+ (2I2,2,2,2 + 8I3,1,1,3 + 8I2,2,1,3)XµXννXµ

+ (4I2,2,2,2 + 16I3,1,1,3 + 8I2,2,1,3 + 8I2,3,1,2 + 8I3,1,2,2

+8I3,2,1,2)XµµXνXν

+ (32I3,1,1,3 + 16I3,1,2,2)XµνXµXν

+ (4I2,2,1,2,2 + 16I3,1,1,1,3 + 16I2,1,2,1,3 + 8I2,2,2,1,2

+8I2,1,3,1,2 + 16I2,2,1,1,3)XµXµXνXν (4.10)

+ (4I2,2,1,2,2 + 16I3,1,1,1,3 + 16I2,2,1,1,3)XµXνXµXν

+ (4I2,2,1,2,2 + 16I3,1,1,1,3 + 16I2,2,1,1,3)XµXνXνXµ .

A1 is a direct transcription of (4.8). However, in A2 we
have shortened the expression by using a standard conven-
tion, namely, we have identified every term with its mirror
conjugate and have used only one of the two forms. In other
words, each term stands for the semi sum of itself plus its
mirror conjugate. For instance,

4I2,2,3XµµXνν := (2I2,2,3 + 2I3,2,2)XµµXνν ,

16I3,0,2,2 ZµνXµXν

:= 8I3,0,2,2 ZµνXµXν + 8I2,2,0,3XµXνZµν . (4.11)

In obtaining A2 we have used the Jacobi identity (here
Y represents an arbitrary quantity)

Yµν = Yνµ + [Zµν , Y ] (4.12)

to reduce the number of terms, e.g. by eliminating terms
of the type XµνZµν (as 1

2 [Zµν , X]Zµν) and by canonically
ordering the Lorentz indices.

5 Six derivative terms, B3

The term F3 in the expansion (2.15) has been computed
in [39]:

F3 = +
20
3
NαNαNβNβNγNγ − 2NαNβNαNγNβNγ

+
2
3
NαNβNγNαNβNγ + 2NαNαNβNγNγNβ

−4NαNαNβNγNβNγ − 16NNαNβNαNγNβγ

+16NNαNβNβNγNαγ + 6N2NααNβNβNγγ

−16NNααNNββNγNγ − 8NNαNαβNNγNγβ

−16NNαNαβNβNNγγ − 8NNαNβNNαγNβγ

+8NNαNβNNβγNαγ + 10NNαNββNNαNγγ

−4NNαNββNNγγNα + 8NNαNββNαNNγγ

− 8
3
NNααNNββNNγγ + 12N2NααNβNNβγγ

+3N2NαββN
2Nαγγ − 8ZαβNγNNαNβNNγ

+4NZαβNNγNαNβNγ − 8NZαβNNαNβNγNγ

−8NZαβNNαNγNβNγ − 4NZαβNNαNγNγNβ

−16NZαβNNαNNγγNβ − 16ZαβN2NγγNNαNβ

−16ZαβN2NγNγαNNβ − 16NZαβN2NαγNγNβ

−16NZαβN2NαNγγNβ − 8N2ZαβN
2NαγNβγ

−16N2ZαβN
2NαNβγγ − 16NZαβN2NαγγNNβ

+8N2ZααβN
2NβNγγ − 2N3ZααβN

3Zγβγ

+16ZαβN3ZγαγN
2Nβ +NZαβNNγNZαβNNγ

−4NZαβNNαNZβγNNγ − 4N2ZαβN
2NγZαβNγ

+8ZαβN2NγZαγN
2Nβ + 16ZαβN3ZαγNγNNβ

−2NZαβN2ZαβNNγNγ − 4NZαβN2ZαγNNβNγ

+4NZαβN2ZαγNNγNβ − 8ZαβN3ZαβN
2Nγγ

− 4
3
N2ZαβN

2ZαγN
2Zβγ . (5.1)

In this formula the number of explicit terms has been
reduced by identifying terms related by
(i) cyclic permutations and
(ii) mirror symmetry. As noted before some conventions
here differ from those in [39]. In order to obtain the heat
kernel coefficientB3 fromF3 weuse the procedure of Sect. 2,
as in e.g. (2.28). This yields

〈B3〉 =
〈

−3I44XαββXαγγ − 24I414XαXβαXβγγ

+ (−12I324 − 12I414)XαXββXαγγ +
8
3
I333XααXββXγγ

+ (−24I4114 − 24I4123)XαXαXβXβγγ

− 12I4114XαXβXαXβγγ

+ (−12I1324 − 6I1414 − 6I2224 + 16I2233 + 4I2323

+16I3133)XαXαXββXγγ

+ (−24I1414 − 24I2314)XαXβXαβXγγ

+ 8I3232XαXβXαγXβγ − 8I3232XαXβXβγXαγ
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− 24I1414XαXβXγβXγα

+ (−24I1414 − 24I2314 + 16I3223)XαXαβXβXγγ

+ 8I3232XαXαβXγXγβ − 24I4141XαXβαXγXβγ

+ (−6I1414 − 12I1423 − 10I2323 − 8I2332)XαXββXαXγγ

+ (−24I13214 − 24I14114 − 24I22214 + 32I22313 − 24I23114

+16I23213 + 32I31223 + 32I31313

+16I32123)XαXαXβXβXγγ

+ (−48I41141 − 48I41231)XαXαXβXγXβγ

+ 16I32132XαXαXβXγXγβ

+ (−16I13232 − 16I22232 + 32I31322 − 48I41141

−48I41231)XαXαXβXβγXγ

+ (−24I11324 − 24I11414 − 16I21233 − 40I21323 − 24I21413

−16I31322)XαXαXβXγγXβ

+ (−24I14114 − 24I23114 + 16I32123)XαXβXαXβXγγ

+ (16I32222 + 16I32312 − 48I41141)XαXβXαXγXβγ

+ (−16I21323 + 16I32132)XαXβXαXγXγβ

+ 16I32312XαXβXγXαXβγ

+ (−24I114114 − 48I114123 − 8I121323 − 16I122223

+32I123132 + 16I213123 + 64I213132 − 24I214122

− 20
3
I222222 +

64
3
I313131

)
XαXαXβXβXγXγ

+ (−48I114114 + 8I121323 + 16I122223 + 16I123123

−16I132312 − 48I214113 − 16I222213

+4I222222 + 32I313212)XαXαXβXγXβXγ

+ (−48I113214 − 24I114114 + 8I123123 − 32I212313

−40I213213 − 2I222222)XαXαXβXγXγXβ

+ (16I121323 − 8I213231 + 16I221322 + 2I222222

+8I312312 − 12I411411)XαXβXαXγXβXγ

+
(
8I121323 − 2

3
I222222

)
XαXβXγXαXβXγ

+ 8I323XαXββZγαγ + (16I233 + 16I323)XαXβγγZαβ

+ 8I323XαβXγβZαγ

− 16I3123XαXαXβZγβγ + 16I3123XαXβXγαZβγ

+ 16I3231XαXαβXγZβγ

+ (16I2223 + 32I2313 + 16I3123 + 32I3213)XαXβXγβZαγ

+ (16I1233 + 16I2313 + 16I3213)XαXβXγγZαβ

+ (32I3123 + 32I3132)XαXβαXγZβγ

+ (16I2223 + 16I2232 + 16I2313

+16I3123)XαXββXγZαγ

+ (8I22222 + 32I31123 + 32I31132 + 32I31321

+16I32131)XαXαXβXγZβγ

+ (8I22222 + 32I31123 + 32I31132 + 16I31213 + 16I31222

+16I32131)XαXβXαXγZβγ

+ (32I22123 + 32I22132 + 16I22213 + 4I22222 + 32I23113

+32I31123 + 8I31213)XαXβXβXγZαγ

+ (8I13231 − 4I22222 + 8I31213)XαXβXγXαZβγ

+ 2I33ZααβZγβγ + 16I313XαZαβZγβγ

+ 8I133XααZβγZβγ + (16I1133 + 2I2222)XαXαZβγZβγ

+ 4I2222XαXβZαγZβγ

+ (−16I1313 − 4I2222)XαXβZβγZαγ

+ (4I2222 + 8I3131)XαZαβXγZβγ (5.2)

+ (4I1331 − I2222)XαZβγXαZβγ +
4
3
I222ZαβZαγZβγ

〉
.

For the proper interpretation of this formula, it is im-
portant to recall that mirror symmetric terms have been
identified, as in (4.11).

F3 contains 45 terms but only 40 different structures
of fixed operators, since some of the terms differ only by
the position of underivated N ’s. Similarly, B3 contains 52
different structures of fixed operators (e.g.XαZβγXαZβγ),
each with a coefficient function written as a combination
of functions Ir1,r2,...,rn

. Counting each of these as different,
B3 contains a total of 147 terms.

As explained at length in [39], the expression of F3
is not unique due to integration by parts and the Jacobi
identity (4.12) and this is also true for B3. The previous
expression for B3 comes directly from F3 using only cyclic
and mirror symmetries to reduce the number of terms.
This is also the shortest expression we have found for B3
from the point of view of the number of terms. No sys-
tematic minimization of the number of terms in B3 has
been attempted (it was done in [39] for F3), nevertheless
the existence of a much shorter expression seems unlikely.
Alternatively, one can try to reduce the number of struc-
tures. The length defined from the point of view of the
number of structures can be reduced from 52 to 37. This is
because, as discussed below, all functionals of the type of
B3 can be written using a standard basis of structures with
37 elements. (Conceivably, a concrete functional such as
B3 could be written using a smaller number of structures,
but this is unlikely.) The price to pay for a smaller number
of structures is to increase the number of terms from 147
to about two thousand terms.

6 Basis of structures with two, four
and six derivatives

Instead of finding shortest expressions, it is also of interest
to find a standard basis [40, 41] of structures. We discuss
that problem in this section.
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Specifically, one would like to express a generic gauge
invariant functional F (D,X) constructed with Dµ and X
and with a fixed number of covariant derivatives, as a
combination of structures Ti (the basis, independent of the
functional F ) with F -dependent coefficients F (i) which are
functions of labeled X’s:

〈F 〉 =
N∑
i=1

〈
F (i)(X1, X2, . . .)Ti

〉
(6.1)

(the number of arguments in F (i) being the number of fixed
operators in the structure Ti).

A standard basis is subject to some requirements,
namely,
(i) the structures in the basis must be sufficient to express
any functional and
(ii) all of them must be necessary (i.e., no one can be re-
moved from the basis without spoiling the requirement (i)).

The expressions forB0,B1 andB2 in (2.34) suggest that
the following are standard basis for gauge invariant func-
tionals with cyclic and mirror symmetry: For zero deriva-
tives,

T1 = 1 . (6.2)

For functionals with two derivatives

T1 = X2
µ , (6.3)

and for four covariant derivatives,

T1 = (X2
µ)

2, T2 = (XµXν)2, T3 = X2
µµ,

T4 = X2
µXνν , T5 = XµXνZµν , T6 = Z2

µν . (6.4)

This is indeed so. For instance, for two covariant derivatives,
in addition to T1 = X2

µ, one could write down a further
structure Xµµ, however, this is redundant since

〈f(X)Xµµ〉
= 〈−[Dµ, f(X)]Xµ〉 =

〈−∇f(X1, X2)X2
µ

〉
=

〈
F (1)(X1, X2)T1

〉
. (6.5)

As we have noted at the end of Sect. 3 the coefficient
functions F (i)(X1, X2, . . .) must be regular in the coinci-
dence limit of two or more arguments to define meaningful
expressions. If this requirement is not met one finds that
formally a smaller number of structures would suffice. For
four derivatives these are T1 and T2. For instance, T3 can
be reduced to T1 as follows:〈

f(X1, X2)X2
µµ

〉
= 〈f(X1, X3)(X1 − 2X2 +X3)(X3 − 2X4 +X1)

×DµDµDνDν〉

=
〈
f(X1, X3)

× (X1 − 2X2 +X3)(X3 − 2X4 +X1)
(X2 −X1)(X3 −X2)(X4 −X3)(X1 −X4)

×XµXµXνXν
〉

=
〈
F (1)(X1, X2, X3, X4)T1

〉
. (6.6)

Such a reduction is faulty as the identity used in the second
stepDµ → (X2 −X1)−1Xµ is only formal (as noted above,
the equation [Y,X] = Xµ does not imply Y = Dµ).

In addition to being sufficient and necessary, for a stan-
dard basis one may ask whether the coefficients F (i) are
unique. In general they will not be unique. For instance,
for the structure X2

µ, to any given F (1)(X1, X2), one can
add an arbitrary odd function f(X1, X2) = −f(X2, X1).
Such an addition

〈
f(X1, X2)X2

µ

〉
vanishes identically us-

ing cyclic symmetry. Therefore, F (1)(X1, X2) can only be
unique if one imposes the further condition that it must
be symmetric under transposition of X1 and X2. It is clear
that under such restriction F (1)(X1, X2) is unique. (This
can be verified using the technique of bare structures intro-
duced below.) Equivalently, a functional

〈
F (1)(X1, X2)X2

µ

〉
is identically zero if and only if the symmetric function
F (1)(X1, X2) is identically zero.

In the four derivative case, the coefficients can always
be chosen to have the following symmetries

F
(1)
1234 = F

(1)
1432 = F

(1)
3214 = F

(1)
3412 ,

F
(2)
1234 = F

(2)
1432 = F

(2)
2143 = F

(2)
2341 = F

(2)
3214 = F

(2)
3412

= F
(2)
4123 = F

(2)
4321 ,

F
(3)
12 = F

(3)
21 ,

F
(4)
123 = F

(4)
321 ,

F
(5)
123 = F

(5)
321 ,

F
(6)
12 = F

(6)
21 , (6.7)

where we use a shorthand notation e.g. F (2)
1432 = F (2)(X1,

X4, X3, X2). For instance〈
F

(5)
123XµXνZµν

〉
= −

〈
F

(5)
432ZµνXνXµ

〉
= −

〈
F

(5)
321XνXµZµν

〉
=

〈
F

(5)
321XµXνZµν

〉
(6.8)

(using, in the first equality, that a term and its mirror
symmetric have been identified). With these symmetry
restrictions, these F (i) can be shown to be unique.

We finally come to the six derivative case (always as-
suming gauge invariant functionals with cyclic and mirror
symmetries). The 52 structures appearing for B3 in (5.2)
are neither necessary nor sufficient. A standard basis is
as follows:

T1 = XαβγXαβγ , T2 = XαXβγXαβγ ,

T3 = XαβXαγXβγ , T4 = XαXαXβγXβγ ,
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T5 = XαXβXγXαβγ , T6 = XαXβXαγXβγ ,

T7 = XαXβXβγXαγ , T8 = XαXαβXγXγβ ,

T9 = XαXβγXαXβγ , T10 = XαXαXβXγXβγ ,

T11 = XαXβXβXγXαγ , T12 = XαXβXαXγXβγ ,

T13 = XαXβXγXαXβγ , T14 = XαXαXβXβXγXγ ,

T15 = XαXαXβXγXβXγ , T16 = XαXαXβXγXγXβ ,

T17 = XαXβXαXγXβXγ , T18 = XαXβXγXαXβXγ ,

T19 = XαXβγZβαγ , T20 = XαβXαγZβγ ,

T21 = XαXβXγZαβγ , T22 = XαXβXαγZβγ ,

T23 = XαXβXβγZαγ , T24 = XαXαβXγZβγ ,

T25 = XαXαXβXγZβγ , T26 = XαXβXαXγZβγ ,

T27 = XαXβXβXγZαγ , T28 = XαXβXγXαZβγ ,

T29 = ZαβγZαβγ , T30 = XαZβγZαβγ ,

T31 = XαβZαγZβγ , T32 = XαXαZβγZβγ ,

T33 = XαXβZαγZβγ , T34 = XαXβZβγZαγ ,

T35 = XαZαβXγZβγ , T36 = XαZβγXαZβγ ,

T37 = ZαβZαγZβγ . (6.9)

To establish that this set is sufficient we follow the ideas
put forward by Müller in [41] for the standard heat kernel
expansion. Consider the set of all possible structures with
six derivatives, removing those that are redundant using
(i) dummy indices,
(ii) cyclic symmetry and
(iii) mirror symmetry.

There are 211 such distinct structures. Using integra-
tion by parts one can always remove all structures where
Lorentz indices are contracted within the same factor, e.g.
the index α in XααXβγXβγ . Next, one can use the Ja-
cobi identity (4.12) to choose the order of the covariant
derivatives within each factor, for instance, if XαβγXαβγ
is retained, XαβγXαγβ becomes redundant. For the same
reason all structures of the type (. . . Y...αβ...γ . . . Z...αβ) are
also redundant. Finally, XαXβXγZβαγ can be reduced to
T21 using the Bianchi identity

Zαβγ = Zβαγ + Zγβα . (6.10)

This produces the set of structures in (6.9).
The above constructive procedure shows that the 37

structures are sufficient. Before showing that they are also
necessary, we need to discuss the symmetries of their co-
efficient functions F (i). These are as follows:

F
(1)
12 = F

(1)
21 , F

(3)
123 = F

(3)
213 = F

(3)
321 , F

(4)
1234 = F

(4)
3214,

F
(5)
1234 = F

(5)
4321 , F

(6)
1234 = F

(6)
3214 , F

(7)
1234 = F

(7)
3214,

F
(8)
1234 = F

(8)
3412 , F

(9)
1234 = F

(9)
2143 = F

(9)
3412,

F
(11)
12345 = F

(11)
32154 , F

(13)
12345 = F

(13)
54321 ,

F
(14)
123456 = F

(14)
165432 = F

(14)
321654 , F

(15)
123456 = F

(15)
321654 ,

F
(16)
123456 = F

(16)
321654 = F

(16)
456123 ,

F
(17)
123456 = F

(17)
165432 = F

(17)
456123 ,

F
(18)
123456 = F

(18)
654321 = F

(18)
234561 ,

F
(20)
123 = F

(20)
321 , F

(27)
12345 = F

(27)
54321 , F

(28)
12345 = F

(28)
54321 ,

F
(29)
12 = F

(29)
21 , F

(31)
123 = F

(31)
213 , F

(32)
1234 = F

(32)
3214,

F
(33)
1234 = F

(33)
3214 , F

(34)
1234 = F

(34)
3214 , F

(35)
1234 = F

(35)
3412 ,

F
(36)
1234 = F

(36)
4321 = F

(36)
3412 , F

(37)
123 = F

(37)
213 = F

(37)
231 . (6.11)

We have indicated only the generators of the symmetry
group (e.g. forF (3) it follows that this function is completely
symmetric under permutations). As discussed before, only
after imposing the symmetries canone expect the coefficient
functions to be unique for a given functional. A subtlety
that did not appear in the two or four derivative cases is
that one has to take into account not only true symmetries
but also quasi-symmetries. For instance,〈
F

(31)
123 T31

〉
=

〈
F

(31)
123 XαβZαγZβγ

〉
=

〈
F

(31)
432 ZβγZαγXαβ

〉
=

〈
F

(31)
213 XαβZβγZαγ

〉
=

〈
F

(31)
213 XβαZαγZβγ

〉
=

〈
F

(31)
213 (XαβZαγZβγ + [Zβα, X]ZαγZβγ)

〉
=

〈
F

(31)
213 XαβZαγZβγ + (X1 −X2)F

(31)
213 ZαβZαγZβγ

〉
=

〈
F

(31)
213 T31 + (X1 −X2)F

(31)
213 T37

〉
, (6.12)

therefore the antisymmetric component of F (31)
123 under

transposition of 12 can always be traded by a contribu-
tion to T37 and one can require F (31)

123 to be symmetric.
To verify that the 37 structures are necessary we have

used the following device. We consider a generic expres-
sion F of the type (6.1) with unspecified coefficient func-
tions F (i). Then F is expanded in terms of bare structures,
namely, structures formed with operators Dµ, as in the
first equality of (6.6). There are five such bare structures,

DαDαDβDβDγDγ , DαDαDβDγDβDγ ,

DαDαDβDγDγDβ , DαDβDαDγDβDγ ,

and DαDβDγDαDβDγ

(modulo cyclic and mirror symmetries). The reason to do
this is that an expression written in terms of bare struc-
tures is zero if and only if the corresponding coefficient
functions vanish (after imposing the appropriate symme-
try restrictions to those coefficients). That is, there are no
identities (like Jacobi or integration by parts) in terms of
bare structures, so two expressions are equal only if their
(symmetrized) coefficient functions are equal. To see that
a given structure Ti is necessary, i.e., that it cannot always
be written in terms of the other structures, it is enough to
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expand F as a power series ofX in terms of bare structures
and equate it to zero. If Ti were redundant, for any choice
of F (i) there would be choices of the other coefficient func-
tions so that the equation F = 0 would hold true at each
order in the series expansion. It can be verified that this is
not the case for any Ti when one considers the equations
at order X6.

In the six derivative case, we have not found a closed
proof that the symmetrized coefficient functions associated
to an expression are really unique. In principle there could
exist non-trivial identities, that is, sets of non-vanishing
functions F (i) producing a vanishing expression F . (If the
F (i) were not symmetrized or the Ti were not all necessary,
this would certainly be the case.) To investigate this issue,
we have considered large classes of functions F (i) of the
type encountered inB3, i.e., obtained by linear combination
of functions Ir1,r2,...,rn , with adjustable numerical coeffi-
cients. The corresponding expression has been expanded
in terms of bare structures and equated to zero. No non-
trivial identity has been found. Our conjecture is that the
symmetrized coefficient functions corresponding to a given
expression are unambiguous.
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Appendix

A Summary of the notation and conventions

In this appendix we collect several notational conventions
used in the text.

K = D2
µ+X , Dµ = ∂µ+Vµ , Zµν := [Dµ, Dν ] . (A.1)

〈 〉 := 1
(4πτ)d/2

∫
ddx tr ( ) . (A.2)

Units restoration:

an → τnan , Bn(X) → τnBn(τX) . (A.3)

Indices convention:

YµI = [Dµ, YI ] . (A.4)

Symmetric functions:

Ir1,r2,...,rn =
n∏
�=1

1
(r� − 1)!

(
∂

∂X�

)r�−1

×
n∑
i=1

eXi

∏
j �=i

1
Xi −Xj

. (A.5)

I1 = eX ,

I1,1 =
eX1 − eX2

X1 −X2
, (A.6)

I1,1,1 =
eX1 − eX2

(X1 −X2)(X2 −X3)

− eX1 − eX3

(X1 −X3)(X2 −X3)
.

Mirror transformation:

AB → BTAT , Xµ1...µn → Xµ1...µn ,

Zµ1...µn
→ −Zµ1...µn

. (A.7)

Mirror symmetry convention:

Y :=
1
2
(Y + Y T) . (A.8)
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