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Abstract. Using the technique of labeled operators, compact explicit expressions are given for all traced
heat kernel coefficients containing zero, two, four and six covariant derivatives, and for diagonal coefficients
with zero, two and four derivatives. The results apply to boundaryless flat space-times and arbitrary

non-Abelian scalar and gauge background fields.

1 Introduction and conclusions

Ever since its introduction by Schwinger [1], the heat ker-
nel of Laplace-type operators has been a useful tool to
deal with one loop effective actions in quantum field the-
ory. This due to the fact that the heat kernel provides
a manifestly gauge invariant regularization of ultraviolet
divergences. An additional virtue, is that, unlike the ef-
fective action, the heat kernel is a one-valued functional.
The heat kernel can be applied to study spectral densities
of Klein—Gordon operators and in the proof of index theo-
rems [2,3], to compute the {-function [4] and the anomalies
of Dirac operators [5], to deal with chiral gauge theories [6]
and models of QCD [7], to the Casimir effect [8], to com-
pute black hole entropies [9], etc. Exact calculations of the
heat kernel at coincident points are available in partic-
ular manifolds [10,11] or for configurations subjected to
suitable algebraic constraints (of the constant curvature
type) [12—-14]. In the general case an asymptotic expansion
in powers of the proper time, the Seeley—DeWitt expan-
sion [15,16], is available. The coefficients of the expansion
have been computed to rather high orders in several setups,
including curved spaces with and without boundary, and
in presence of non-Abelian gauge fields and non-Abelian
scalar fields, using different methods [6,17-24]. The heat
kernel expansion at finite temperature has been discussed
in [25,26]. A generalized heat kernel expansion around non-
c-number mass terms has been introduced in [27-29]. The
extension to non-commutative quantum field theory has
been presented in [30].

The standard heat kernel expansion can be regarded
as a double expansion in the strength and in the num-
ber of derivatives of the background fields. It is therefore
most suitable for external fields which are both weak and
adiabatic, i.e., of slow space-time variation. A resumma-
tion of this expansion is provided by covariant perturba-
tion theory [31]. Perturbation theory assumes weak but
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not necessarily adiabatic fields. In this paper we study a
different resummation, namely, a covariant derivative ex-
pansion [32-34]. The terms of this expansion have a given
number of covariant derivatives but any number of scalar
fields (these fields playing the role a non-Abelian local mass
term). So the fields are assumed to be adiabatic (and the
gauge fields weak, to preserve gauge invariance) but the
scalar fields may be strong. Using the technique of labeled
operators, we are able to write in finite form the contri-
butions to the traced heat kernel classified by the number
of derivatives. Such contributions can also be regarded as
generating functions for all the heat kernel coefficients of
the standard Seeley—DeWitt expansion with a fixed num-
ber of derivatives. Explicit results are presented for zero,
two, four and six derivatives, involving 1, 1, 6 and 52 sum-
mands, respectively. These results hold for boundaryless
flat space-time but non-Abelian gauge and scalar fields. Ex-
tension to curved space-time should also be possible using
the symbols method. A covariant derivative expansion to
four derivatives has been obtained in [35] for the diagonal
heat kernel and in [36] for the effective action, for curved
space-time in the case of minimal (i.e. Abelian) scalar field
and no gauge connection.

In Sect. 2 we define the covariant derivative expansion
for the trace of the heat kernel and work out the lower
order terms. Although the calculation could be done from
scratch using the method of symbols, a shorter path is pro-
vided by the method of Chan [32] which was devised for
the effective action. In that section results are presented
to four derivatives. We show that after expansion of our
results in powers of the scalar field the standard coefficients
are recovered. Section 3 is devoted to explaining the tech-
nique of labeled operators [33,34,37,38]. Such a procedure
allows one to develop a calculus to deal with functions of
non-commuting variables. The non-commutative version
of the ordinary derivative is shown to satisfy the Leibniz
and chain rules, as well as to yield a non-commutative ver-
sion of the Taylor expansion. In Sect. 4 the diagonal heat
kernel coefficients, within the derivative expansion, are ob-
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tained to four derivatives. This is done through functional
variation of the traced coefficients. Unlike the standard
expansion, in the resummed expansion one finds that each
diagonal term comes from the traced term of the same or-
der. This yields a consistency condition that is verified by
our formulas. Section5 gives the six derivative contribu-
tion. It is based on previous results for the effective action
found in [39]. Here one important issue is that of finding
either a short or a systematic expression for the result.
This is due to the existence of identities among the possi-
ble gauge invariant structures, coming from integration by
parts and Jacobi identities. In that section we give a rela-
tively short expression for the six derivative contribution,
which contains 52 different gauge invariant structures. In
Sect. 6 we study the problem of finding a standard basis
of structures for the derivative expansion of generic gauge
invariant functionals. The corresponding problem in the
context of the standard heat kernel expansion has been
treated before by Miiller [40,41]. Some subtleties appear
for the derivative expansion because the analogous of the
Seeley-DeWitt coefficients are now functions (of labeled
operators). So, for instance, even if the elements of a basis
are complete and linearly independent it does not directly
follow that the coefficients must be unique; it is at least
necessary to impose permutation symmetry restrictions to
the functions which play the role of coefficients of the ex-
pansion. In this last section we construct standard basis of
gauge invariant structures for functionals with zero, two,
four and six derivatives, with 1, 1, 6 and 37 elements, re-
spectively. It is worth noticing that, similarly to what hap-
pens for the standard heat kernel expansion [30], all the
results presented here apply directly to non-commutative
quantum field theory. This is particularly clear when such
theories are formulated within the quantum phase space
approach [42], which only requires to replace the integral
over coordinates by a trace on X-space. Indeed, at no place
do we use special commutation properties for our symbols,
except [0,,0,] = 0 which holds in the non-commutative
case too.

2 Covariant derivative expansion
of the heat kernel

Our goal is to obtain a derivative expansion for the heat
kernel of the Klein—Gordon operator
K=D!+X. (2.1)
Here X (z) is a multiplicative operator (i.e. an ordinary
function) which is a matrix in some internal space, D,, =
Ou~+ V() is the covariant derivative, V,(z) being a matrix
in internal space. Space-time is Euclidean and flat, without
boundaries and has dimension d. K acts on matter fields
in the fundamental representation.
The standard heat kernel expansion is of the form

o0

(e o) = (s 7 o).

n=0

(2.2)
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This is an asymptotic expansion where the a,, known as
(diagonal) Seeley—DeWitt coeflicients, are 7-independent
local gauge covariant polynomials of dimension 2n. They
are constructed with X and D,, in gauge covariant combi-
nations. One can choose to order the expansion by powers
of 7 or, equivalently, by the mass dimension carried by the
external fields V,, and X and their derivatives. The quan-
tities 0, V,, and X have dimension 1,1,2 respectively. In
spaces with boundary, n may take half-integer values [43],
but in our case the index n is a non-negative integer. The
lowest order terms are

0/0:1,
CLli)(7
1., 1 1,
a2:§X +6X’“'#+EZ'“'V. (23)

In the derivative expansion the terms are classified by
the number of covariant derivatives they carry, rather than
the mass dimension they carry (as in the standard heat
kernel expansion) so

o0

T — 1 n
(zle K|x> = W;T Ap (),

(2.4)

where A,,(x) depends on 7 and contains 2n covariant deriva-
tives. In this counting, X counts as zeroth order, [D,,, X]
as first order, 7, = [D,,, D, ] as second order, and so on.
(Counting the dimension carried by the background fields
and by 7, A4,, has dimension 2n.) Technically, the covari-
ant derivative expansion can be defined by introducing a
bookkeeping parameter A by means of X(z) — X(\x)
and V,(z) = AV, (Az), and then expanding the functional
(A Lz|e™ M| X\"1z) in powers of A. The derivative expan-
sion is a resummation of the standard expansion, namely,
if a? denotes the pieces of a, with exactly 2¢ covariant
derivatives (and so with n — ¢ X’s)

Ag(e) =) 7"l ().

n>q

(2.5)

In what follows we will set 7 = 1, i.e. remove 7 from
the formulas, since it can be restated at any moment by
standard dimensional counting. Thus, for instance

(z]eX|z) = ﬁ ZOA“(:U). (2.6)

In each A,,, X appears to all orders. The prescription to
restore 7 is simply to make the replacement X — 7.X, plus
A, - T"A,.

For many purposes it is often sufficient to work with
the functional trace of the heat kernel,

Tref = /dda: tr(zle™|z) . (2.7)

The symbol Tr refers to the full trace on space-time and
internal spaces. We will use tr to denote the trace in the
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internal space only. Introducing the short-hand notation!

1
W/ddmtr( ),

the standard and derivative expansions take the form

()= (2.8)

TreX = (an(x)) = (An(2)) . (2.9)

In TreX one can use simpler coefficients, b, and B,,
which coincide with a, and A,, respectively, modulo by
parts integration and the trace cyclic property, so that

(bn) = {an) , (Bn) = (An) . (2.10)
In particular,
Tref = i (Bn) . (2.11)
n=0

Whereas the coefficients A,, and the functionals (B,,) are
uniquely defined, there is an ambiguity in the choice of B,,
which is exploited to choose them as simple as possible. The
coefficients A,, can be obtained from the B,, (see Sect.4).

The calculation of the coefficients B,, can be done us-
ing the method of symbols [44,45] (actually, this methods
provides A,, from which B, is obtained). In addition to
the derivation of the coefficients an important part of the
calculation is to find a simple expression for them, that is,
removing redundancies coming from the trace cyclic prop-
erty, integration by parts and Bianchi identities. Because
much work has been devoted to the covariant derivative ex-
pansion of the effective action, we have found it practical to
start from that functional where much of the simplification
work has already been done. The most useful results for our
purposes are found in the work of Chan [32] who obtains
the derivative expansion of the effective action with a min-
imum of terms up to four derivatives. This work was later
extended to six derivatives in [39]. There we find (making
explicit terms up to second order)

ddedik K2
TrlOgK = / Wtr <—10gN+ FNI" +) s
(2.12)
where

N=(k>-X)"', N,=[D,,N]. (2.13)

In what follows we will consistently use the convention?
Y, = [D,, Y] where Y7 is an object (such as N, X or 2)

with an ordered set of Lorentz indices I. So for instance®

X, =Dy, [Dy, X]],

L Our notational conventions are summarized in Appendix A.

2 Here and elsewhere in this work Y stands for a generic
matrix-valued function.

3 Note that in [39] the convention Y7, = [D,,Y7] is used
instead. Also Fj, there corresponds to iZ,, here.
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Zywx = [Dy, Z,»]) = [Dy, [Dy, Dy]] - (2.14)

The formula (2.12) holds modulo a counterterm action
which must be a local polynomial (in X, V,, and 0,,) of
degree at most d. Such counterterms depend on the renor-
malization prescription chosen. The derivative expansion

of the effective action can be written as

d 2
Trlog K = /d od’k E " d/ )
(2.15)

n+d / 2)
Each F), is gauge covariant, contains a number 2n of D,,’s
and a number 2n of N’s, and has no explicit dependence
on the space-time dimension d. To four derivatives

tr (Fy,) .

Fy=—log N,
F = §N3, (2.16)
Fy = N.N? — %(NHNV) ~(NN,,)*-2NZ,,NN,N,
1
—5(Zu ).

These terms were obtained in [32]*. The six derivative term
Fj is given in (5.1). It was obtained in [39] and contains 45
terms. In this section we concentrate on terms up to four
derivatives and defer the treatment of the six derivative
terms to Sect. 5. We will not consider terms with eight or
more derivatives in this work.

First of all we will translate the expansion (2.15) to an
expansion for the heat kernel:

d z d d
K= [ 2% S5 S (K —2)
r2miz— F2Tt1 dz

(2.17)

Here I' is a positively oriented path in the z complex plane
enclosing the eigenvalues of K. Because the large eigenval-
ues of K lie on the real negative axis, the path is taken
starting and ending at —oo. Next we apply Chan’s for-
mula (2.15) to Trlog(K — z), i.e., with the replacement
X — X — z. The first thing to note is that the countert-
erm ambiguities do not survive in the heat kernel, since a
polynomial in z does not give a contribution to the integral
in (2.17). Taking Tr in (2.17) and inserting (2.15), one finds
that all non-explicit dependence on k,, comes in the form
X — k% — 2. Making the shift z — z — k2 removes all de-
pendence on k, in F,. (Such change of variables is justified
at the level of asymptotic expansions we are considering.)
Straightforward momentum integration gives then

o0

dz
TreX = — —e®
; r 2TC1

(Fn) 5 (2.18)

4 Note that the sign of the fourth term of F> is incorrect
in [32].
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that is,
d
—Z,eZFn

B, = —
" F2TC1

(2.19)
(perhaps modulo integration by parts and cyclic property).
In this formula the quantities F;, are given by the same

expressions (2.16) where now
N=(z-X)". (2.20)

The integration over z is easily done for the zeroth order
term (undoing the steps in (2.17))

d d
BO:/—Z,ezlogN: —Z ©
r 2m r2mz—X

z

=X (2.21)

For By, we first expand the covariant derivative using
the identity
N,=NX, N, (2.22)

so that z appears only in N outside covariant derivatives

P = %NQXMNQXM (2.23)
(exploiting the cyclic property to move the last N to the
first place).

When this F} is inserted in (2.19) the integral over z
cannot be readily done because z appears in two places and
the operators do not commute in general. Here we apply the
technique of labeling the operators [33,34,37,38]: relative to
the two X, in (2.23) there are three positions, namely, the
position 1 at the left of the first (leftmost) X,,, the position
2,in between the two X, and the position 3, after the second
X .. (Operators at position 3 can be moved to position 1 by
the cyclic property.) The operators relative to which the
positions are defined (the two X, in this case) are named
“fixed operators”. The other operators are then labeled
according to their position relative to the fixed operators
and moved to the left (or to any convenient location in the
expression). In this way we can rewrite (2.23) as

1 1 1 1
F, = ZN2N2X, X, = =
PR T 0 o X)2 (2 — X,)?

2
X, -

(2.24)
The labels 1 and 2 indicate at which position the labeled
operators N1 and Ny (or X7, X3) should be inserted (rela-
tive to the fixed operators X, X,,). The point of following
this procedure is that the labeled operators are effectively
c-numbers: similar to the time-ordered product or the nor-
mal product, they can be written in any order since their
true position is given by their label. Because they are c-
numbers, nothing prevents us from doing the z integration
as for ordinary functions. We refer to Sect. 3 for details on
the use and properties of labeled operators. Their use is
crucial for the rest of the paper. After integration over z
we obtain

(By) = (f(X1, X2)X]) (2.25)

where X7 is X located at position 1 and X5 is X at position
2. f(X1, X5) is the ordinary function f(zx,y) evaluated at
X1 and X5, with

1 [ de . 1 1
1o)== | o T
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et —e¥ 1 e+ e¥
= - = . 2.26
(z—y)? 2(@-y)? (2.26)

(By definition I" always encloses the poles, in this case at
x and y.)

The right-hand side of (2.25) can be regarded as the
generating function for all the Seeley-DeWitt coefficients
with two covariant derivatives. Indeed, making a series
expansion in X one obtains (using the cyclic property in
the second equality)

1 1

(1) = ( (=15 — 900+ Xo) = g (X2 4 X)

1
12 24 80

1
— =X Xo+...) X2
601 2+ ) #>

1 1 1
={(-=X?>- —XX?>- —X?x?
< 1277 127 7R 40 r

1
~ g XX XX+ > : (2.27)

To the order shown, this reproduces the pieces with two
covariant derivatives in bs, by and b5 [17].

For the four derivative term we proceed similarly. Ex-
panding the covariant derivatives of N one finds

1
Fy, = (NQXMN2X#)2 - §(N2XMN2X,,)2
—4(N*X,NX,)? — (N°X )2
—4N*X,NX,N*X,, —2N*X,N*X,N*Z,,
1
—5(V?Z,)?
1
= NINZNGNE(X[)? = 5 NENGNGNE (X, X, )?
—4ANPNo N3 Ny(X7)? — NPN3 X7,
—4ANYNoN3 X2 X, —2NY Ny N3 X, X\ Z,0,

(2.28)

72

1
75N3N2222

The integrals over z involved in the computation of the
B,, are of the form

d
Im,rz,.‘.,’rn (Xla X27 cee ,Xn) = / 72:,6'2]\7{1]\75“2 A N;" .
r 27[:1
(2.29)
They can be computed from the basic integrals
I9(X1, Xo, ..., Xy) (2.30)
dz - 1
= [ —eNiNy..Ny=)» X || ——
i=1 VE
using
Irl,rg,...,rn(leXQa"'7Xn) (231)
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n 1 9 ri—1 0

=115 (8Xi) I (X1, Xo,...,X,).

=1

(Alternatively, Iy, vy, r, (X1, X2,..., X,,) can be obtained
from I? |, taking the first r; arguments to be Xj,
then the next 7y arguments to be X5 and so on.) Note
that the functions I, ,,, .. are everywhere analytic in
the n-dimensional complex plane, and invariant under a
common permutation of labels 7; and arguments X;. The
basic functions I? are completely symmetric and they can
be obtained from the following recurrence relation

(X)) =e*t, (2.32)
I (Xa, oy Xnm1, Xy Xn1)
_ INXy, . X1, X)) — I0( X, Xm1, Xo1)
Xn— Xnt1 ’
We will use the short-hand notation
VARSI [ 0. CTD. CYUNID. ¢ I (2.33)

With this notation the lowest terms in the derivative ex-
pansion are

(Bo) = (I1) ,
! 2,2X3>,

B = (-3

1
Bs) = . AT )(22 [ X X 2
gLy 3y s Ly Ly v
< 2> <( 2,2,2,2 3131)( “) 22222( I )

(2.34)

+I3,3XZH + 413,1,3XZXW
1 2
+2159 90X, X, 2, + 512’22#1, .
Expanding in powers of X one obtains for By
1
By =(-—-22
(B = (152,
1
— X7
+ 12 ny

1 1 1
+—X°Z2, + —(XZuw)* + —

X Z
40 HYT 60 60" "

1
X2
+ 120" ##

L
180

(2.35)

1
+—XZ + X2, X2

120

1
T (XX, X, Z + X, XX, 2,0, X, X0 X Z,)

1
—X%X,,
+ 180+

Foen).

which reproduces bs, b3, b4, bs to four covariant deriva-
tives [17].

515

The expressions (2.34), together with the similar ex-
pression (5.2) for Bs, are the main result of this work.
Note that, compared to the standard heat kernel expan-
sion, in the covariant derivative expansion the numerical
coeflicients of the standard expansion are replaced by co-
efficients which are functions of labeled X’s.

It can be observed that the coefficient functions found
are directly consistent with the cyclic property. For in-
stance, the identity

(f(X1, X, X3, X0) X7 X72) = ( (X3, X4, X1, X2) X2 X7)
(2.36)

shows that one can always choose the coefficient func-
tion of (Xi)2 to be invariant under the cyclic permutation
(X1, Xo, X3, X4) = (X3, X4, X1, X5) and this symmetry
is explicit in (By) given in (2.34) using the permutation
symmetry properties of the functions I, r, .. . .

There is another symmetry also realized in the B,, which
will play an important role in what follows. This is mar-
ror symmetry, that is, the symmetry under transposition
defined by linearity plus the rules

(AB)" =BTAY, DI=D XT=Xx. (237

o
They imply [D,,,Y]" = —[D,,, Y] and thus

X;Tl...#n = (_l)nXul...un , ZE

1--Hn

= (_1)n_1ZlJfl---:U'n *
(2.38)
In practice, because the total number of Lorentz indices is
always even, an equivalent rule is to pick up a minus sign
for each Z,,,.. ., in the expression.
Mirror symmetry holds for the Klein—-Gordon operator
K and for the heat kernel e, and is manifest in By, B;
and Bs. E.g.

(F(X1, Xa, X3)X2X,,) " (2.39)
= (f(X4, X3, X2) X0, X7) = (f(X3, X2, X1) X} X,

shows that the coefficient function of XﬁX v (namely, I5 1 3
in this case) can be chosen even under transposition of
X1 and X3. It is curious that the coefficient function of
X, X,Z,, has a greater symmetry than required by cyclic
and mirror symmetries.

3 Labeled operators

In this section we describe useful properties of labeled op-
erators. In an expression with labeled operators, there are
fizxed operators relative to which the positions are defined

and labeled operators which carry position labels, e.g.”
f(A1,B9,C5,.. )XY ... (3.1)

X, Y, etc, are the fixed operators in this case, A is to be
inserted before (to the left of) X (position 1), B between

5 The symbols A, B, X, etc, are generic and do not refer to
those of the heat kernel throughout this section.
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X and Y (position 2), C' just after Y (position 3) and so on.
Such an expression can be defined in two equivalent ways.
First by writing f as a sum of separable functions, e.g.

2 : ni, na, n
f(x1,$2,1‘37---) = Cnl»n27"37---x11x22‘r33"‘ ’
ni1,m2,mn3,...
F(A1, B2, Cs,. . )XY ... (3.2)
= Y Chrname  ATMXBTEYO L
n1,n2,n3,...

Another example would be the expansion of f as a com-
bination of plane waves, through its Fourier transform.
Alternatively the expression in (3.1) can be interpreted
through its matrix elements. Taking |n, A) as a basis of
eigenvectors of A with eigenvalue a,,, and similarly for B
and C, and (n, A, etc. being the corresponding dual basis,

(n, Al f(A1, B2,C3)XY|r,C) (3.3)
= Z f(aTH bm7 CT)<77'7 A‘lev B> <m7 B|Y|T7 C> .

The important point is that the expression in (3.1) depends
only on the function f and not on how it is expanded.

The usefulness of the labeled operators stems from the
fact that they are effectively c-numbers since e.g. A1 By =
By Ay, and so they can be used in several ways. For instance,
[A, ] can be written as A; — Ag, since [A, X] = (41— A2) X,
then f([A, ]) can be represented as f(A; — As). The well-
known identity

e X =etxe ™4 (3.4)
becomes trivial using labeled operators
e Ix etz x —eMiem 2 X — e Xe . (3.5)

This kind of properties have been used in [33,38] to easily
derive commutator expansions.

Labeled operators appear naturally in non-Abelian ex-
pansions. If one needs to compute® f(A + B) to first order
in B, where A and B do not commute, a standard tech-
nique is to transform this problem into et by means of
a functional transform, and then apply Dyson’s formula

1
B =t 4 / dse*4Be1=94 L O(B?). (3.6)
0
Using labeled operators one can go further and obtain

1
eAtB — 4 +/ dsestit1=9)42p 1 O(B?)
0

Ay A

A —en 2
=t B O() (3.7)

S By f(A), and similar expressions, we mean an ordinary
function f(z) evaluated at z = A, A being an operator, in
the analytical extension sense, as in e? (and not to completely
general operator-valued functions of A). More generally, f may

be matrix-valued taking values in a different space than that
of A.
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(B being the fixed operator). Undoing now the functional
transform yields the useful relation, for a generic func-

tion f(x),

J(A) ~ f(42)
Al — Aq

This relation does not rely on the exponential function
and can also be established by using, e.g., a Taylor series
expansion of f(z).

From the previous expansion we learn that under a first
order variation 8A of the operator A (the function f being
unchanged)

f(A+B) = f(A) + B+0O(B?). (3.8)

where the operation V is defined by
V(e a) = 1D = IT2) (3.10)

€Tl — T2

V maps a one-argument function f(z) into a two-argument
function V f(x,y). Note that 8 can be any variation of A,
including e.g. a derivative

Ouf(A) =V f(Ai, A2)0,A (3.11)
or a commutator, 8 = [X, |,
(X, f(A)] = Vf(A1, A2)[X, A] (3.12)

(indeed Vf(Al,AQ)[X, A] = Vf(Al,AQ)(AQ - Al)X =
(f(A2) = f(A1)) X = [X, f(A)]).

The operator V generalizes the ordinary derivative to
the non-Abelian case. Of course, when A and A commute
the right-hand side of (3.9) becomes f'(A)0A (applying
de 'Hopital’s rule). It is straightforward to verify that the
operator V satisfies a Leibniz rule,

V(f9)(z1,22) = Vf(z1,22)9(x2) + f(xl)Vg(xl,fB(2) , )

3.13

where f(z), g(z) are possibly non-commuting (matrix-

valued) functions of a single variable. Furthermore, V also
complies with the chain rule

V(fog)(x1,22) = Vf(g9(z1),9(z2)) Vg(r1,22)

(in this case f(z) may be matrix valued) as is readily ver-
ified.

In the case of several variables one may need partial
derivatives, e.g.

8(f (A1, B2)X)
= Vlf(Al, As, B3)6AX + VQf(Al, Bs, Bg)XSB
+f(A1, B2)8X, (3.15)

(3.14)

where Vy indicates that it acts on the ¢th argument of f.

It is also convenient to define a V operator acting on
the space of functions of any number of variables, in such
a way that if maps a n-variable function f(z1,...,2,) to
a (n + 1)-variable function, as

V=)V,
k

(3.16)
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(Vi acting on the kth argument of the function) and so

Vf(l'l,..

Y (CP ety
k=1

. 71'n+1) (317)

s Ly oo ,l‘n+1)
)

.,$n+1) — f(xl, oue
Tk — Tk+1

where Zy indicates that the fth argument is missing. The
definition is such that

5 (f(Ay, ...
= V(A Ao, . ..

7An)(5A)n_1)
A1) (8A)" (3.18)

for 8(A) = 0A and §(8A) = 0. Using this operator we can
write down the non-Abelian version of Taylor’s formula
J(A+ B) = BV f(4) (3.19)

(V4 emphasizes that V acts on the A-dependence of the
expression). That is

f(A+ B)
= f(A)+Vf(A,A)B + %sz(Al,Ag,Ag)BQ +...
f(A1) — f(A2)

=fA =y = B
n ( f(A1) f(As)
(Az — A7)(A3 — A1) T (A= A9)(As — Ag)

f(As) 2
(Al—Ag)(AQ—A3)>B bl

(3.20)

In the Abelian case the coefficients reduce to those of the
standard Taylor expansion.

To finish this section we note a very important point
when using labeled operators, namely, that of the regularity
of the functions of the type f(A1, Asg, .. .) at the coincidence
limit of two or more arguments. These functions must be
regular (free from poles) at the coincidence limit to de-
fine meaningful operators. For instance, an expression of

the type
1

A — A B
is only formal as it refers to any solution Y of the equation
[A,Y] = B. Depending on the operators A and B such a
solution either does not exist or is not unique. The operation
V (cf. (3.10)) does not introduce singularities (poles) in that
limit and the functions appearing in the expansion (3.20)
are all regular.

(3.21)

4 Diagonal heat kernel coefficients

The diagonal coefficients A, (z) can be computed using
e.g. the method of symbols, however, having the B,, it is
simpler to derive them from the relation [6]

8y TrelitX = Tr (eDi+X8X) , (4.1)
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where 8 x is a first order variation with respect to X. That is

dTreX
(@l o) = S5 (12)
For the Seeley—DeWitt coefficients this implies
8 (brv1)
= (4m)?/2 2 4.
au(x) = (4m 2 (13)

whereas for the derivative expansion coefficients it gives

3 (Bn)
X (2)

An(z) = (4m)4/? (4.4)

This relation allows one to obtain A,, from B,,, but B,, can
also be obtained from A,, through (2.10). This implies the
consistency condition

(B.) = (am2 (350

It can be shown that this consistency condition is satisfied
by our expressions (2.34). This only requires the property

(4.5)

I’r‘l,m,m,rn :eXIf(XQ _Xlu"'7Xn _Xl) (46)

(this relation codifies the heat kernel property e® — e%ef
under the shift X — X + a, a being a c-number). The
consistency condition is not sufficient to determine B,, since
it will be satisfied too by all heat kernel-like operators of
the form exp (X + f(DZ))

Using the results in Sect. 3 relative to the manipula-
tion of labeled operators, one can carry out the functional
derivative with respect to X indicated in (4.4) for (B,,)
given in (2.34). However, in the present case it is simpler
to go back to F, (i.e., before integration over z and labeling
of operators) and do the variation there, using the identity

dxN = NSXN. (4.7)
We illustrate the method with Aj:
Sx (F1)
=3y <;N2XHN2Xﬂ>
= (N8XN?X,N*X, + N*3XNX,N?X,,
+N*(8X),N*X,,) (4.8)

= ((N*X,N?X,N + NX,N>X,N*
—(N*X,N?),)8X)
=((-2N*X,NX,N? - N?X,,N?)8X).
8 (Fy) 1

- ()72 (2NENaN3 X, X, + NIN3X,.,.) -

(4.9)
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Following the same procedure with F5 and carrying out
the integration over z, we find

Ag=1,

A = 2[2,1,2Xi + 122X,

Ay =211 22,0

+ (4I32,0 — 81303+ 8121,3) ZuuwXo

+ (421,20 — 16130,13) X2, X0

+ (3203,0,1,3 — 1613113 — 812122+ 1613022) Z,,, X, X,

+ 2133 X,

+ (2L 30+ 4I313+41223) X, X0

+ 81313 XX

+ (161313 + 8132.2) X0 Xu

+ (4I3299+ 1613113+ 1612 213) X, X0 Xy

+ (2I2222+ 831,13+ 812213) X, X X,

+ (4I3299+ 1613113+ 812213+ 8I2312+ 813122
+8132,1,2) Xupu X0 Xy

+ (3213113 + 1613122) X, X, X,

+ (4122122 + 16131113+ 16121213+ 8122212

sy dydy

+815131,2 +161221,1,3) X, X X0 X, (4.10)

+ (4l22,122+ 16031113 +161221,13) X, X, X, X,
+ (421,22 + 16131113+ 161221,1,3) X, X0 X, X, .

s L4y Lyt

Aj is a direct transcription of (4.8). However, in Ay we
have shortened the expression by using a standard conven-
tion, namely, we have identified every term with its mirror
conjugate and have used only one of the two forms. In other
words, each term stands for the semi sum of itself plus its
mirror conjugate. For instance,

41593 XXy = (2I223 4+ 21322) X, X00
1613,0,2,2 2, X, X,

= 8[37072)2 Z,“,XHXU + 8]272)073 XNXZ,ZMV . (411)

In obtaining A, we have used the Jacobi identity (here
Y represents an arbitrary quantity)

Y=Y+ [Z.,,Y] (4.12)
to reduce the number of terms, e.g. by eliminating terms
of the type X, Z, (as §[Zu, X]Z,,) and by canonically
ordering the Lorentz indices.

5 Six derivative terms, Bj

The term F5 in the expansion (2.15) has been computed
in [39]:

20
Fy =+ 5 NaNaNgNgNy Ny = 2Na NgNo Ny NNy
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L2
3
~4N4N,NsN,NgN., — 16NN,NsN, N, N3,
+16NNoNgNgNy Ny + 6N’ Ny NgNg N,y
~16NNao NNggN, N, — SNN,Nos NN, N5
~16NNyN,sNsNN,, — 8NN,NsNN,,Ng,
+8NNoNgNNpyNoy + LIONNoNgg NNy N,
—4NNaNggNNyy Ny + 8NNy NggNo NN,
8
3
+3N?NoggN?Nowyy — 8Z03Ny NNy NgN N,
+4NZos NN NuNgN,, — 8N Zo3s NN, NN, N,
~8NZasNNyN,NsN, — 4N Z,sNN,N, N, Nj
~16NZosNNoNN. N5 — 16Z03N>N.,, NN, N3
~16Z43N?NyN,oNNg — 16N Zo3N? Ny N, N
~16NZogN*NoNyyNg — 8N?Zog N2 N,y N,
—16N?ZogN*NoNgyy — 16N ZogN? Ny NNg
+8N?ZpagN?* NN,y — 2N>Zo0g N> Z., 5.,
+16Z03N>ZyayN*Ng + N ZogNN N ZogN N,
~4NZWsNNyNZg, NN, —AN?Z,s N> N, Zo5N.,
+8Z4sN?Ny Zo0yN*Ng + 16 Z03N> Zoy Ny N Ng
~2NZosN?ZogNN,N, — AN ZosN?*Zoy NNgN,,
+4ANZo3N?Zoy NNy Ng — 8Z0sN>Zos NN,

oNgNyNoNsN, + 2N, Ny NsN, N, N3

NNuooNNssNN,, + 12N?N,o NsNNg..,

4
—gNzZagNQZMNQZM . (5.1)

In this formula the number of explicit terms has been
reduced by identifying terms related by
(i) cyclic permutations and
(ii) mirror symmetry. As noted before some conventions
here differ from those in [39]. In order to obtain the heat
kernel coeflicient B3 from F3 we use the procedure of Sect. 2,
as in e.g. (2.28). This yields

(B3) = <—3I44Xa55Xaw — 241414 X0 X3a X5y

8
3
+ (—2414114 — 2414123) X0 X0 X3 X 31

— 1204114 X0 X X0 X5y

+ (—12I1394 — 611414 — 612024 + 1612233 + 412303
+1615133) Xa Xa X3 X4y

+ (—2411414 — 2415314) X Xg X 05 X

+ 813232 X0 XpXay Xy — 83230 X0 X3 X 3y Xary

+ (—12]324 — 12[414)XQX5,3XQ77 + IgggXaangX,y,y
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U Xa X5 X5 X

+ (—2411414 — 2412314 + 1613223) X0 X0 X3 X5

+ 815039 X0 Xop X0 X5 — 2414141 Xo X 5o Xy X5,

+ (—6I1414 — 1211423 — 1012323 — 812332) X0 X 3p X0 X+

+ (—24113214 — 24114114 — 24122214 + 32129313 — 24123114

+16123213 + 32131223 + 32131313

+16132123) X0 X X3 X3X 1y

+ (—48141141 — 48141231) X0 Xa XX, Xy

+ 16L52132 X0 Xa XX, X 5

+ (—16113232 — 16129232 + 32/31322 — 48141141
—48[41231)X'a)('a)(ﬁ)(ﬁﬂy)(,Y

+ (—24111324 — 24111414 — 16121233 — 40121323 — 24121413
—16131522) Xo Xo X5 X X5

+ (—24114114 — 24123114 + 16132123) X0 Xg X0 X3 X,

+ (16132229 + 16132319 — 48141141) X0 X3 X0 X, X3y

+ (—16121323 + 16132132) X X X0 X, X3

+ 16132312 X0 X X, X0 X

+ (—241114114 — 481114123 — 81121323 — 161122023

+32I123132 + 161213123 + 641213132 — 241214122

20 64
—51222222 + 31313131) XoXo XXX, X,

+ (—481114114 + 81121323 + 161122023 + 161123123
—161132312 — 481214113 — 161222213
+41229900 + 321313212) X0 X0 X3 X, X3 X,
+ (—481113214 — 241114114 + 81123123 — 321212313
—401213213 — 21222222) X0 X0 Xp X X X
+ (161121323 — 81213231 + 161221320 + 21222022
+81312312 — 120411411) X0 Xp X0 X, Xp X,

2
+ (81121323 - 31222222> Xo XX X0 Xg X,

+ 81323 X0 X33 Zyar + (161233 + 161303) X0 X vy Zag
+ 81323 XX 820~
 16L3195 X0 Xa X575, + 1613125 X0 X5 X 10 Z5n
+ 163931 Xa Xap X+ Z5,
+ (1612223 + 3212313 + 1613123 + 3213213) X0 X3 X320y
+ (1671938 + 1615515 + 16T3213) Xo X5 X1 Zos
- (32Ls193 + 32T3132) X X 50 X, Z5,
+ (1612223 + 1612932 + 1612313
16T3193) Xa X 55X Zar

+ (8139992 + 32151123 + 32131132 + 32131321
+16132131) Xa Xo X3Xy Zgy

+ (8139992 + 32151123 + 32131132 + 16131213 + 16131222
+16132131) X0 X X0 X5 Zsy

+ (32122123 + 32122132 + 16122213 + 4122202 + 32123113
+32131123 + 8131213) Xo X3 X3 X Zay

+ (8113231 — 4122222 + 8131213) X0 X3 X1 X0 Z 3,

+ 2133200 Zypy + 161313 X0 Zap Z 5y

+ 81133 X 0aZpy Zpy + (1611133 + 212202) X0 X0 Z 3y Z g

+ 4l2200 X0 X3 Zan Zgy

+ (—1611313 — 412222) X0 X3 Z 3y Z oy

+ (412222 + 813131) Xo Zap Xy Zsy (5.2)

4
+ (411331 — I2222) X0 Zpy XaZpy + 31222ZaﬂZo¢’yZB’y> .

For the proper interpretation of this formula, it is im-
portant to recall that mirror symmetric terms have been
identified, as in (4.11).

F3 contains 45 terms but only 40 different structures
of fixed operators, since some of the terms differ only by
the position of underivated N’s. Similarly, Bs contains 52
different structures of fixed operators (e.g. X0 ZgyXaZgy),
each with a coefficient function written as a combination
of functions I, ,,, . .. Counting each of these as different,
Bj3 contains a total of 147 terms.

As explained at length in [39], the expression of Fj
is not unique due to integration by parts and the Jacobi
identity (4.12) and this is also true for Bs. The previous
expression for B3 comes directly from F3 using only cyclic
and mirror symmetries to reduce the number of terms.
This is also the shortest expression we have found for Bs
from the point of view of the number of terms. No sys-
tematic minimization of the number of terms in Bs has
been attempted (it was done in [39] for F3), nevertheless
the existence of a much shorter expression seems unlikely.
Alternatively, one can try to reduce the number of struc-
tures. The length defined from the point of view of the
number of structures can be reduced from 52 to 37. This is
because, as discussed below, all functionals of the type of
B3 can be written using a standard basis of structures with
37 elements. (Conceivably, a concrete functional such as
B3 could be written using a smaller number of structures,
but this is unlikely.) The price to pay for a smaller number
of structures is to increase the number of terms from 147
to about two thousand terms.

6 Basis of structures with two, four
and six derivatives

Instead of finding shortest expressions, it is also of interest
to find a standard basis [40,41] of structures. We discuss
that problem in this section.
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Specifically, one would like to express a generic gauge
invariant functional F(D, X) constructed with D,, and X
and with a fixed number of covariant derivatives, as a
combination of structures T; (the basis, independent of the
functional F') with F-dependent coefficients F(*) which are
functions of labeled X'’s:

(F) = zN: <F<“(X1,X2, .. )T>

i=1

(6.1)

(the number of arguments in F(*) being the number of fixed
operators in the structure 7T3).
A standard basis is subject to some requirements,
namely,
(i) the structures in the basis must be sufficient to express
any functional and
(ii) all of them must be necessary (i.e., no one can be re-
moved from the basis without spoiling the requirement (i)).
The expressions for By, By and Bs in (2.34) suggest that
the following are standard basis for gauge invariant func-
tionals with cyclic and mirror symmetry: For zero deriva-
tives,

T, =1. (6.2)
For functionals with two derivatives
T, =X}, (6.3)

and for four covariant derivatives,

T = (X})? To=(X.X,)?% T3=X.,

Ty=XXp, Ts=X,X,Z,, To=2,,. (64)

Thisisindeed so. For instance, for two covariant derivatives,
in addition to 77 = X?2, one could write down a further

/j,7
structure X,,,,, however, this is redundant since

(F(X) Xpup)
= (=[Dy, f(X)] Xp) = (~V (X1, X2) X)

= (FO(X1, %) T . (6.5)

As we have noted at the end of Sect.3 the coefficient
functions F) (X1, X,,...) must be regular in the coinci-
dence limit of two or more arguments to define meaningful
expressions. If this requirement is not met one finds that
formally a smaller number of structures would suffice. For
four derivatives these are T7 and T5. For instance, T3 can
be reduced to T as follows:

(f (X1, X)X,
= (f(X1, X3) (X1 — 2Xo + X3) (X3 — 2X4 + X7)
XDALD,LDVD»

= <f(X1’X3)

o (X1 —2X5 + X3)(X5 —2X4 + Xy)
(X2 — X1) (X3 — X2)(Xy — X3) (X1 — Xy)
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xX,LXHXl,Xl,>

= <F(1)(X17X27X37X4) T1> . (66)
Such a reduction is faulty as the identity used in the second
step D,, — (X2 — X1)~'X,, is only formal (as noted above,
the equation [V, X] = X, does not imply ¥ = D,,).

In addition to being sufficient and necessary, for a stan-
dard basis one may ask whether the coefficients F() are
unique. In general they will not be unique. For instance,
for the structure Xﬁ, to any given F( (X, X5), one can
add an arbitrary odd function f(X;,Xs) = —f(Xa, X1).
Such an addition < f (Xl,XQ)X2> vanishes identically us-
ing cyclic symmetry. Therefore, F(l)(X 1, X2) can only be
unique if one imposes the further condition that it must
be symmetric under transposition of X; and Xs. It is clear
that under such restriction F(1) (X, X5) is unique. (This
can be verified using the technique of bare structures intro-
duced below.) Equivalently, a functional <F WXy, X 2)X3>
is identically zero if and only if the symmetric function
FM (X1, X5) is identically zero.

In the four derivative case, the coefficients can always
be chosen to have the following symmetries

F1(21:)34 = Fl(i%Q = Fz’gh = 3(22 )

Fl(gi)M = F1(i:)>,2 = F2(124)13 = Fz’(?i)u = F:g%z; = F?Sﬂz
= Fitss = Fin

Fy = FyY

Fiy = Fyoi

Fiy = F3 .

Py =FY (6.7)

where we use a shorthand notation e.g. FS%Q = FO (X,
X4, X3, X2). For instance

5
(F%,x.2,.)
5 5
== <F4(3%ZWX'/XM> == <F3(2iXVXuZW>

(6.8)

5
<F:’£2%X/LXDZW>

(using, in the first equality, that a term and its mirror
symmetric have been identified). With these symmetry
restrictions, these F() can be shown to be unique.

We finally come to the six derivative case (always as-
suming gauge invariant functionals with cyclic and mirror
symmetries). The 52 structures appearing for Bs in (5.2)
are neither necessary nor sufficient. A standard basis is
as follows:

Ty = Xap, X,
T3 = XapXay Xy,

Ty = XoXpyXopy »
Ty = XoXaXpy X5y,

afy
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Ty = XoaX3Xo Xapy, To=XaXsXayXgy,

Tr = XoX5Xp,Xar
Ty = XoXp, X0 Xp, ,
Ti = XoX3X5X, X ,
Tis = Xo X5 X, XaXsy,
Tis = XaXaXsX, XX, ,
Tir = XaXpXa X, XX, ,

Ty = XoXoapXy X5,
Tio = XaXa XX, X5, ,

Tio = XaXpXo Xy Xpy,

Tis = XaXoXpX5X, X,
Ti6 = XaXaXpX, X, X5,
Tis = Xa XX, X0 X5X,,

Ty = onXﬁ'yZﬂa'y ’

Ty = Xa,BXa‘yZ,B’Y ’

Tor = Xo X3 Xy Zopy
Tos = Xa X3 X5y Zar

Tos = XaXo XX, 75, ,
Tor = Xa X3 XXy Zar ,

Tyo = XaXpXarZgy
Tos = XoaXapXyZgy,
Too = XoaXpXa Xy Zsy,
Tos = Xa XX, XaZgy,

Ty = Zapy, T30 =XaZpyZapy,

Ts1 = XopZorZay, Tso = XaXaZpyZgy
Tss = XaX3ZoyZay . Tss = XaX5Z5y Zor |
Tss = XoZopXoZgy, Tse = XaZpyXaZpy
Tsr = ZopZanZs -

aBy

(6.9)

To establish that this set is sufficient we follow the ideas
put forward by Miiller in [41] for the standard heat kernel
expansion. Consider the set of all possible structures with
six derivatives, removing those that are redundant using
(i) dummy indices,

(ii) cyclic symmetry and
(iii) mirror symmetry.

There are 211 such distinct structures. Using integra-
tion by parts one can always remove all structures where
Lorentz indices are contracted within the same factor, e.g.
the index o in XonXgyXg,. Next, one can use the Ja-
cobi identity (4.12) to choose the order of the covariant
derivatives within each factor, for instance, if X5, Xagy
is retained, X3, Xqys becomes redundant. For the same
reason all structures of the type (... Y 5.4 ...Z op) are
also redundant. Finally, X, X3 X, Zg,, can be reduced to
T5; using the Bianchi identity

Zoapy = Zga~y + ZyBa - (6.10)

This produces the set of structures in (6.9).

The above constructive procedure shows that the 37
structures are sufficient. Before showing that they are also
necessary, we need to discuss the symmetries of their co-
efficient functions F(). These are as follows:

1 1 3 3 3 4 4
F1(2):F2(1)7 F1(2;,:F2(1:)3:F3(2%a F1(2L2,4:F3(2;47

5 5 6 6 7 7
F1(2:)a4 = F4(3%1 ) F1(2%4 = F?Szizu F1(2:)’,4 = F?fzizp

8 8 9 9 9
F1(2%4 = F?E4i2 ’ F1(2%4 = F2(14)13 = F3(4i2a

11 11 13 13
F1(234)15 = F?S21%4 ’ F1(234)15 = F5(43%1 ’

14 14 14 15 15
F1(234)156 - F1(654)132 - F3(21f)354’ F1(234)156 - F?E21%54 ’
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F1(21§z)156 = FS%?()%E)AL = le(égizzs )
Fgg};% = F1(é;)132 = le(;gi% )
F1(215§z)156 = Fﬁ(;i:)’)ﬂ = F2(31,zi2)61 )
Fis = Fia s Plis = Faagn s Fiows = Faasn »
PRV =", F =Py, Fin = Fon,
Fiy = Fim Fiasi = Fiouy, Fion = Fiin
Fii = Fiss = Fiiny . Fias = Faiy) = Fiyy - (6.11)

We have indicated only the generators of the symmetry
group (e.g. for F®) it follows that this function is completely
symmetric under permutations). As discussed before, only
after imposing the symmetries can one expect the coefficient
functions to be unique for a given functional. A subtlety
that did not appear in the two or four derivative cases is
that one has to take into account not only true symmetries
but also quasi-symmetries. For instance,

(FVTa) = (P XapZar 23,

= <F4(§21)Zﬁ“/zavXaﬂ>

= <F2(f§)XaﬁZ,BvZaw> = <F§f§)XﬁaZavZBv>

= <F2(f§)(XaﬁZa'vZ/3’v + [ZﬁavX]ZrmZﬁ'y)>

= <F2(:13§)Xaﬁza'vzﬁ'v + (X1 — XZ)Fz(%)ZaﬁZa'yZﬁ'y>

= (BT + (X0 - X2) P T ) (6.12)
therefore the antisymmetric component of Fl(gé) under
transposition of 12 can always be traded by a contribu-

tion to 737 and one can require Fl(;’;) to be symmetric.
To verify that the 37 structures are necessary we have
used the following device. We consider a generic expres-
sion F' of the type (6.1) with unspecified coefficient func-
tions F(*). Then F is expanded in terms of bare structures,
namely, structures formed with operators D,, as in the
first equality of (6.6). There are five such bare structures,

DoDoD3DsDyD.,, DaDaDsD, DD,
DoDoDgDyDyDg, DoD3DoDyDgD.,
and DoDpD.DoDgD,

(modulo cyclic and mirror symmetries). The reason to do
this is that an expression written in terms of bare struc-
tures is zero if and only if the corresponding coefficient
functions vanish (after imposing the appropriate symme-
try restrictions to those coefficients). That is, there are no
identities (like Jacobi or integration by parts) in terms of
bare structures, so two expressions are equal only if their
(symmetrized) coefficient functions are equal. To see that
a given structure 7; is necessary, i.e., that it cannot always
be written in terms of the other structures, it is enough to
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expand F' as a power series of X in terms of bare structures
and equate it to zero. If T; were redundant, for any choice
of F) there would be choices of the other coefficient func-
tions so that the equation F' = 0 would hold true at each
order in the series expansion. It can be verified that this is
not the case for any 7; when one considers the equations
at order X6.

In the six derivative case, we have not found a closed
proof that the symmetrized coefficient functions associated
to an expression are really unique. In principle there could
exist non-trivial identities, that is, sets of non-vanishing
functions F(* producing a vanishing expression F. (If the
F) were not symmetrized or the T} were not all necessary,
this would certainly be the case.) To investigate this issue,
we have considered large classes of functions F() of the
type encountered in Bs, i.e., obtained by linear combination
of functions I, r,, . r,, with adjustable numerical coeffi-
cients. The corresponding expression has been expanded
in terms of bare structures and equated to zero. No non-
trivial identity has been found. Our conjecture is that the
symmetrized coefficient functions corresponding to a given
expression are unambiguous.
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Appendix

A Summary of the notation and conventions

In this appendix we collect several notational conventions
used in the text.

K=D)+X, D,=08,+V,, Zu :=[Du.D,]. (A1)

1 d
Units restoration:
an, = 7"ay,, B,(X) = "B, (tX) . (A.3)
Indices convention:
Y.r =[D,,Y1]. (A.4)
Symmetric functions:
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L.L. Salcedo: Covariant derivative expansion of the heat kernel
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Mirror transformation:

AB - BTAT ’ Xﬂl-uﬂn - Xﬂln-ﬂn ’
Z/J‘1~~~H'n - _Zmu-mw (A-7)
Mirror symmetry convention:
1
= 5(Y+YT). (A.8)

References

1. J.S. Schwinger, Phys. Rev. 82, 664 (1951)

P.B. Gilkey, J. Diff. Geom. 10, 601 (1975)

M. Atiyah, R. Bott, V.K. Patodi, Invent. Math. 19, 279

(1973)

S.W. Hawking, Commun. Math. Phys. 55, 133 (1977)

. K. Fujikawa, Phys. Rev. D 21, 2848 (1980)

. R.D. Ball, Phys. Rept. 182, 1 (1989)

J. Bijnens, Phys. Rept. 265, 369 (1996) [hep-ph/9502335]

M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rept.

353, 1 (2001) [quant-ph/0106045]

9. J. Callan, G. Curtis, F. Wilczek, Phys. Lett. B 333, 55
(1994) [hep-th/9401072]

10. A.A. Bytsenko, G. Cognola, L. Vanzo, S. Zerbini, Phys.
Rept. 266, 1 (1996) |[hep-th/9505061]

11. R. Camporesi, Phys. Rept. 196, 1 (1990)

12. I.G. Avramidi, J. Math. Phys. 37, 374 (1996) [hep-

LN

o N e o

th/9406047]

13. I.G. Avramidi, Rev. Math. Phys. 11, 947 (1999) [hep-
th/9704166]

14. I.G. Avramidi, J. Math. Phys. 36, 5055 (1995) [hep-
th/9503132]

15. B.S. Dewitt, Phys. Rept. 19, 295 (1975)

16. R.T. Seeley, Proc. Symp. Pure. Math. 10, 288 (1967)

17. A.A. Bel’kov, A.V. Lanyov, A. Schaale, Comput. Phys.
Commun. 95, 123 (1996) [hep-ph/9506237]

18. A.E.M. van de Ven, Class. Quantum Gravity 15, 2311
(1998) [hep-th/9708152]

19. I.G. Moss, W. Naylor, Class. Quantum Gravity 16, 2611
(1999) [gr-qc/0101125]

20. D. Fliegner, P. Haberl, M.G. Schmidt, C. Schubert, Annals
Phys. 264, 51 (1998) [hep-th/9707189]

21. I.G. Avramidi, Nucl. Phys. B 355, 712 (1991)

22. V.P. Gusynin, Phys. Lett. B 225, 233 (1989)

23. E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S.
Zerbini, Zeta regularization techniques with applications
(World Scientific, Singapore 1994)

24. D.V. Vassilevich, Phys. Rept. 388, 279 (2003) [hep-
th/0306138]

25. E. Megias, E. Ruiz Arriola, L.L. Salcedo, Phys. Lett. B
563, 173 (2003) [hep-th/0212237]

26. E. Megias, E. Ruiz Arriola, L.L. Salcedo, Phys. Rev. D 69,
116003 (2004) [hep-ph/0312133]

27. A.A. Osipov, B. Hiller, Phys. Lett. B 515, 458 (2001)
[hep-th/0104165]



28.

29.

30.

31.

32.
33.

34.

35.

36.

L.L. Salcedo: Covariant derivative expansion of the heat kernel

A.A. Osipov, B. Hiller, Phys. Rev. D 64, 087701 (2001)
[hep-th/0106226]

L.L. Salcedo, Eur. Phys. J. direct C 14, 1 (2001) [hep-
th/0107133]

D.V. Vassilevich, Lett. Math. Phys. 67, 185 (2004) [hep-
th/0310144]

A.O. Barvinsky, G.A. Vilkovisky, Nucl. Phys. B 282, 163
(1987)

L.-H. Chan, Phys. Rev. Lett. 57, 1199 (1986)

L.L. Salcedo, Eur. Phys. J. C 20, 147 (2001) [hep-
th/0012166]

L.L. Salcedo, Eur. Phys. J. C 20, 161 (2001) [hep-
th/0012174]

V.P. Gusynin, V.A. Kushnir, Class. Quantum Gravity 8,
279 (1991)

V.P. Gusynin, V.A. Kushnir, Sov. J. Nucl. Phys. 51, 373
(1990)

37

38

39.
40.
41.
42.
43.
44.

45.

523

. L.L. Salcedo, Nucl. Phys. B 549, 98 (1999)
th/9802071]

. C. Garcia-Recio, L.L. Salcedo, Phys. Rev. D 63, 045016

(2001) [hep-th/0007183]

J. Caro, L.L. Salcedo, Phys. Lett. B 309, 359 (1993)

U. Miiller, hep-th/9508031

U. Miiller, hep-th/9701124

L. Alvarez-Gaumé, S.R. Wadia, Phys. Lett. B 501, 319

(2001) [hep-th/0006219)

D.M. McAvity, H. Osborn, Class. Quantum Gravity 8, 603

(1991)

L.L. Salcedo, E. Ruiz Arriola, Ann. Phys. 250, 1 (1996)

[hep-th/9412140]

N.G. Pletnev, A.T. Banin, Phys. Rev. D 60, 105017 (1999)

[hep-th/9811031]

[hep-



